Hyper-Kahler quotients of solvable Lie groups

被引:18
作者
Barberis, ML
Dotti, I
Fino, A
机构
[1] Univ Turin, Dipartimento Matemat, I-10123 Turin, Italy
[2] Univ Nacl Cordoba, FaMAF, RA-5000 Cordoba, Argentina
关键词
solvable Lie groups; hyper-Kahler metrics; hyper-Kahler quotient;
D O I
10.1016/j.geomphys.2005.04.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we apply the hyper-Kahler quotient construction to Lie groups with a left invariant hyper-Kahler structure under the action of a closed abelian subgroup by left multiplication. This is motivated by the fact that some known hyper-Kahier metrics can be recovered in this way by considering different Lie group structures on H-p x H-q (H: the quaternions). We obtain new complete hyper-Kahler metrics on Euclidean spaces and give their local expressions. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:691 / 711
页数:21
相关论文
共 16 条
  • [1] Alekseevsky D. V., 1975, FUNCTIONAL ANAL APPL, V9, DOI DOI 10.1007/BF01075445
  • [2] The geometry and topology of toric hyperkahler manifolds
    Bielawski, R
    Danceri, AS
    [J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2000, 8 (04) : 727 - 760
  • [3] Kahlerian Lie algebras and double extension
    Dardie, JM
    Medina, A
    [J]. JOURNAL OF ALGEBRA, 1996, 185 (03) : 774 - 795
  • [4] HyperKahler quotient construction of BPS monopole moduli spaces
    Gibbons, GW
    Rychenkova, P
    Goto, R
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 186 (03) : 581 - 599
  • [5] GOTO R, 1992, ADV SER MATH PHYS, V16
  • [6] Hermann R., 1960, P AMS, V11, P236, DOI [10.1090/S0002-9939-1960-0112151-4, DOI 10.1090/S0002-9939-1960-0112151-4]
  • [7] HYPERKAHLER METRICS AND SUPERSYMMETRY
    HITCHIN, NJ
    KARLHEDE, A
    LINDSTROM, U
    ROCEK, M
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 108 (04) : 535 - 589
  • [8] CURVATURE HOMOGENEOUS SPACES WITH A SOLVABLE LIE GROUP AS HOMOGENEOUS MODEL
    KOWALSKI, O
    TRICERRI, F
    VANHECKE, L
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1992, 44 (03) : 461 - 484
  • [9] Moduli space of many BPS monopoles for arbitrary gauge groups
    Lee, K
    Weinberg, EJ
    Yi, PJ
    [J]. PHYSICAL REVIEW D, 1996, 54 (02): : 1633 - 1643
  • [10] SCALAR TENSOR DUALITY AND N=1,2 NON-LINEAR SIGMA-MODELS
    LINDSTROM, U
    ROCEK, M
    [J]. NUCLEAR PHYSICS B, 1983, 222 (02) : 285 - 308