Bandgap tuned and oxygen vacant TiO2-x anode materials with enhanced electrochemical properties for lithium ion batteries

被引:34
作者
Kang, Suk Hyun [1 ,2 ]
Jo, Yong Nam [1 ,2 ]
Prasanna, K. [1 ,2 ]
Santhoshkumar, P. [1 ,2 ]
Joe, Youn Cheol [1 ,2 ]
Vediappan, Kumaran [3 ,4 ]
Gnanamuthu, Ramasamy [3 ,4 ]
Lee, Chang Woo [1 ,2 ]
机构
[1] Kyung Hee Univ, Coll Engn, Dept Chem Engn, 1732 Deogyeong Daero, Yongin 17104, Gyeonggi, South Korea
[2] Kyung Hee Univ, Ctr SMART Energy Platform, Coll Engn, 1732 Deogyeong Daero, Yongin 17104, Gyeonggi, South Korea
[3] SRM Inst Sci & Technol, SRM Res Inst, Kattankuthur 603203, Tamil Nadu, India
[4] SRM Inst Sci & Technol, Dept Chem, Kattankuthur 603203, Tamil Nadu, India
基金
新加坡国家研究基金会;
关键词
Energy materials; Lithium ion batteries; Anodes; Titanium oxide; Energy conversion; Electronic conductivity; PHOTOCATALYTIC ACTIVITY; FE3O4; NANOPARTICLES; FACILE SYNTHESIS; SURFACE-DEFECTS; PERFORMANCE; CARBON; NANOCRYSTALS; ELECTRODE; TITANIA; COMPOSITES;
D O I
10.1016/j.jiec.2018.11.020
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As a promising anode material, TiO2-x, is prepared with a low bandgap by adding a zinc powder using a solvothermal reaction. It is homogeneous, spherical, and 30 nm in size, changing from anatase to rutile. It shows a high discharge capacity, 253.8 mAh g(-1), after 50 cycles at 100 mA g(-1) whereas the pristine TiO2 material delivers mere 81.1 mAh g(-1). The improved electrochemical performance with cycling of the TiO2-x compared with the pristine TiO2 material is attributed to the presence of Ti-3* and/or oxygen vacancies. (C) 2018 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:177 / 183
页数:7
相关论文
共 56 条
[1]   Effect of Ti3+ Ions and Conduction Band Electrons on Photocatalytic and Photoelectrochemical Activity of Rutile Titania for Water Oxidation [J].
Amano, Fumiaki ;
Nakata, Masashi ;
Yamamoto, Akira ;
Tanaka, Tsunehiro .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (12) :6467-6474
[2]   High-temperature calcination and hydrogen reduction of rutile TiO2: A method to improve the photocatalytic activity for water oxidation [J].
Amano, Fumiaki ;
Nakata, Masashi .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 158 :202-208
[3]   Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment [J].
Bharti, Bandna ;
Kumar, Santosh ;
Lee, Heung-No ;
Kumar, Rajesh .
SCIENTIFIC REPORTS, 2016, 6
[4]   Percolating networks of TiO2 nanorods and carbon for high power lithium insertion electrodes [J].
Bresser, Dominic ;
Paillard, Elie ;
Binetti, Enrico ;
Krueger, Steffen ;
Striccoli, Marinella ;
Winter, Martin ;
Passerini, Stefano .
JOURNAL OF POWER SOURCES, 2012, 206 :301-309
[5]   Solar absorption and microstructure of C-doped and H-co-doped TiO2 thin films [J].
Buha, J. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2012, 45 (38)
[6]   Porous TiO2 urchins for high performance Li-ion battery electrode: facile synthesis, characterization and structural evolution [J].
Cai, Yi ;
Wang, Hong-En ;
Huang, Shao-Zhuan ;
Yuen, Muk Fung ;
Cai, Heng-Hui ;
Wang, Chao ;
Yu, Yong ;
Li, Yu ;
Zhang, Wen-Jun ;
Su, Bao-Lian .
ELECTROCHIMICA ACTA, 2016, 210 :206-214
[7]   Effect of Ti3+ on TiO2-Supported Cu Catalysts Used for CO Oxidation [J].
Chen, Ching S. ;
Chen, Tse C. ;
Chen, Chen C. ;
Lai, Yuan T. ;
You, Jiann H. ;
Chou, Te M. ;
Chen, Ching H. ;
Lee, Jyh-Fu .
LANGMUIR, 2012, 28 (26) :9996-10006
[8]   Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals [J].
Chen, Xiaobo ;
Liu, Lei ;
Yu, Peter Y. ;
Mao, Samuel S. .
SCIENCE, 2011, 331 (6018) :746-750
[9]   Semiconductor-based Photocatalytic Hydrogen Generation [J].
Chen, Xiaobo ;
Shen, Shaohua ;
Guo, Liejin ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2010, 110 (11) :6503-6570
[10]   In situ synthesis of carbon incorporated TiO2 with long-term performance as anode for lithium-ion batteries [J].
Chen, Yang ;
Ma, Xiaoqing ;
Cui, Xiaoli ;
Jiang, Zhiyu .
JOURNAL OF POWER SOURCES, 2016, 302 :233-239