A semi-linear energy critical wave equation with an application

被引:1
作者
Shen, Ruipeng [1 ]
机构
[1] Tianjin Univ, Ctr Appl Math, Tianjin, Peoples R China
关键词
GLOBAL WELL-POSEDNESS; BLOW-UP; SCHRODINGER-EQUATIONS; CRITICAL NONLINEARITY; HYPERBOLIC SPACES; GROUND-STATE; REGULARITY; SCATTERING; EXISTENCE; DYNAMICS;
D O I
10.1016/j.jde.2016.08.043
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider an energy critical wave equation (3 <= d <= 5, zeta = +/- 1) partial derivative(2)(t)u - Delta u = zeta phi(x)vertical bar u vertical bar(4/(d-2))u, (x, t) is an element of R-d x R with initial data (u, partial derivative(t)u)vertical bar(t=0) = (u(0), u(1)) is an element of (H) over dot(1) x L-2(R-d). Here phi is an element of C(R-d; (0, 1]) converges as vertical bar x vertical bar <- infinity and satisfies certain technical conditions. We generalize Kenig and Merle's results on the Cauchy problem of the equation partial derivative(2)(t)u - Delta u = vertical bar u vertical bar(4/(d-2))u. Following a similar compactness-rigidity argument we prove that any solution with a finite energy must scatter in the defocusing case zeta = -1. While in the focusing case zeta = 1 we give a criterion for global behaviour of the solutions, either scattering or finite-time blow-up when the energy is smaller than a certain threshold. As an application we give a similar criterion on the global behaviour of radial solutions to the focusing, energy critical shifted wave equation partial derivative(2)(t)v (Delta(H3) +1)v = vertical bar v vertical bar(4)v on the hyperbolic space H-3. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:6437 / 6484
页数:48
相关论文
共 32 条
[1]   High frequency approximation of solutions to critical nonlinear wave equations [J].
Bahouri, H ;
Gérard, P .
AMERICAN JOURNAL OF MATHEMATICS, 1999, 121 (01) :131-175
[2]   Global well-posedness and scattering for the energy-critical nonlinear Schrodinger equation in R3 [J].
Colliander, J. ;
Keel, M. ;
Staffilani, G. ;
Takaoka, H. ;
Tao, T. .
ANNALS OF MATHEMATICS, 2008, 167 (03) :767-865
[3]   Weighted decay estimates for the wave equation [J].
D'Ancona, P ;
Georgiev, V ;
Kubo, H .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 177 (01) :146-208
[4]  
Duyckaerts T, 2013, CAMB J MATH, V1, P75
[5]   Universality of blow-up profile for small radial type II blow-up solutions of the energy-critical wave equation [J].
Duyckaerts, Thomas ;
Kenig, Carlos ;
Merle, Frank .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2011, 13 (03) :533-599
[6]   Weighted Strichartz estimates and global existence for semilinear wave equations [J].
Georgiev, V ;
Lindblad, H ;
Sogge, CD .
AMERICAN JOURNAL OF MATHEMATICS, 1997, 119 (06) :1291-1319
[7]  
GEORGIEV V, 2000, MSJ MEMOIRS, V7
[8]   GENERALIZED STRICHARTZ INEQUALITIES FOR THE WAVE-EQUATION [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 133 (01) :50-68
[9]   REGULARITY AND ASYMPTOTIC-BEHAVIOR OF THE WAVE-EQUATION WITH A CRITICAL NONLINEARITY [J].
GRILLAKIS, MG .
ANNALS OF MATHEMATICS, 1990, 132 (03) :485-509
[10]   REGULARITY FOR THE WAVE-EQUATION WITH A CRITICAL NONLINEARITY [J].
GRILLAKIS, MG .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (06) :749-774