Quasi-Newton Stochastic Optimization Algorithm for Parameter Estimation of a Stochastic Model of the Budding Yeast Cell Cycle

被引:6
|
作者
Chen, Minghan [1 ]
Amos, Brandon D. [1 ]
Watson, Layne T. [1 ]
Tyson, John J. [2 ]
Cao, Young [1 ]
Shaffer, Clifford A. [1 ]
Trosset, Michael W. [3 ]
Oguz, Cihan [2 ]
Kakoti, Gisella [4 ]
机构
[1] Virginia Tech, Dept Comp Sci, Blacksburg, VA 24060 USA
[2] Virginia Tech, Dept Biol Sci, Blacksburg, VA 24061 USA
[3] Indiana Univ, Dept Stat, Bloomington, IN 47405 USA
[4] Virginia Tech, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
Optimization; biology and genetics;
D O I
10.1109/TCBB.2017.2773083
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Parameter estimation in discrete or continuous deterministic cell cycle models is challenging for several reasons, including the nature of what can be observed, and the accuracy and quantity of those observations. The challenge is even greater for stochastic models, where the number of simulations and amount of empirical data must be even larger to obtain statistically valid parameter estimates. The two main contributions of this work are (1) stochastic model parameter estimation based on directly matching multivariate probability distributions, and (2) a new quasi-Newton algorithm class QNSTOP for stochastic optimization problems. QNSTOP directly uses the random objective function value samples rather than creating ensemble statistics. QNSTOP is used here to directly match empirical and simulated joint probability distributions rather than matching summary statistics. Results are given for a current state-of-the-art stochastic cell cycle model of budding yeast, whose predictions match well some summary statistics and one-dimensional distributions from empirical data, but do not match well the empirical joint distributions. The nature of the mismatch provides insight into the weakness in the stochastic model.
引用
收藏
页码:301 / 311
页数:11
相关论文
共 50 条
  • [21] Asynchronous parallel stochastic Quasi-Newton methods
    Tong, Qianqian
    Liang, Guannan
    Cai, Xingyu
    Zhu, Chunjiang
    Bi, Jinbo
    PARALLEL COMPUTING, 2021, 101
  • [22] A Variable Sample-size Stochastic Quasi-Newton Method for Smooth and Nonsmooth Stochastic Convex Optimization
    Jalilzadeh, Afrooz
    Nedic, Angelia
    Shanbhag, Uday V.
    Yousefian, Farzad
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 4097 - 4102
  • [23] A Variable Sample-Size Stochastic Quasi-Newton Method for Smooth and Nonsmooth Stochastic Convex Optimization
    Jalilzadeh, Afrooz
    Nedic, Angelia
    Shanbhag, Uday, V
    Yousefian, Farzad
    MATHEMATICS OF OPERATIONS RESEARCH, 2022, 47 (01) : 690 - 719
  • [24] A robust stochastic quasi-Newton algorithm for non-convex machine learning
    Liu, Hanger
    Liang, Yuqing
    Liu, Jinlan
    Xu, Dongpo
    APPLIED INTELLIGENCE, 2025, 55 (07)
  • [25] Cell Cycle Modeling for Budding Yeast with Stochastic Simulation Algorithms
    Ahn, Tae-Hyuk
    Watso, Layne T.
    Cao, Yang
    Shaffer, Clifford A.
    Baumann, William T.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2009, 51 (01): : 27 - 52
  • [26] A stochastic extra-step quasi-Newton method for nonsmooth nonconvex optimization
    Minghan Yang
    Andre Milzarek
    Zaiwen Wen
    Tong Zhang
    Mathematical Programming, 2022, 194 : 257 - 303
  • [27] Adaptive sampling quasi-Newton methods for zeroth-order stochastic optimization
    Raghu Bollapragada
    Stefan M. Wild
    Mathematical Programming Computation, 2023, 15 : 327 - 364
  • [28] Deterministic parallel global parameter estimation for a model of the budding yeast cell cycle
    Panning, Thomas D.
    Watson, Layne T.
    Allen, Nicholas A.
    Chen, Katherine C.
    Shaffer, Clifford A.
    Tyson, John J.
    JOURNAL OF GLOBAL OPTIMIZATION, 2008, 40 (04) : 719 - 738
  • [29] A modified stochastic quasi-Newton algorithm for summing functions problem in machine learning
    Chen, Xiaoxuan
    Feng, Haishan
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (02) : 1491 - 1506
  • [30] Riemannian stochastic quasi-Newton algorithm with variance reduction and its convergence analysis
    Kasai, Hiroyuki
    Sato, Hiroyuki
    Mishra, Bamdev
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84