Quasi-Newton Stochastic Optimization Algorithm for Parameter Estimation of a Stochastic Model of the Budding Yeast Cell Cycle

被引:6
|
作者
Chen, Minghan [1 ]
Amos, Brandon D. [1 ]
Watson, Layne T. [1 ]
Tyson, John J. [2 ]
Cao, Young [1 ]
Shaffer, Clifford A. [1 ]
Trosset, Michael W. [3 ]
Oguz, Cihan [2 ]
Kakoti, Gisella [4 ]
机构
[1] Virginia Tech, Dept Comp Sci, Blacksburg, VA 24060 USA
[2] Virginia Tech, Dept Biol Sci, Blacksburg, VA 24061 USA
[3] Indiana Univ, Dept Stat, Bloomington, IN 47405 USA
[4] Virginia Tech, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
Optimization; biology and genetics;
D O I
10.1109/TCBB.2017.2773083
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Parameter estimation in discrete or continuous deterministic cell cycle models is challenging for several reasons, including the nature of what can be observed, and the accuracy and quantity of those observations. The challenge is even greater for stochastic models, where the number of simulations and amount of empirical data must be even larger to obtain statistically valid parameter estimates. The two main contributions of this work are (1) stochastic model parameter estimation based on directly matching multivariate probability distributions, and (2) a new quasi-Newton algorithm class QNSTOP for stochastic optimization problems. QNSTOP directly uses the random objective function value samples rather than creating ensemble statistics. QNSTOP is used here to directly match empirical and simulated joint probability distributions rather than matching summary statistics. Results are given for a current state-of-the-art stochastic cell cycle model of budding yeast, whose predictions match well some summary statistics and one-dimensional distributions from empirical data, but do not match well the empirical joint distributions. The nature of the mismatch provides insight into the weakness in the stochastic model.
引用
收藏
页码:301 / 311
页数:11
相关论文
共 50 条
  • [1] STOCHASTIC QUASI-NEWTON METHOD FOR NONCONVEX STOCHASTIC OPTIMIZATION
    Wang, Xiao
    Ma, Shiqian
    Goldfarb, Donald
    Liu, Wei
    SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (02) : 927 - 956
  • [2] Quasi-Newton methods for stochastic optimization
    Levy, MN
    Trosset, MW
    Kincaid, RR
    ISUMA 2003: FOURTH INTERNATIONAL SYMPOSIUM ON UNCERTAINTY MODELING AND ANALYSIS, 2003, : 304 - 309
  • [3] A single timescale stochastic quasi-Newton method for stochastic optimization
    Wang, Peng
    Zhu, Detong
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2023, 100 (12) : 2196 - 2216
  • [4] A hybrid stochastic model of the budding yeast cell cycle
    Mansooreh Ahmadian
    John J. Tyson
    Jean Peccoud
    Yang Cao
    npj Systems Biology and Applications, 6
  • [5] A hybrid stochastic model of the budding yeast cell cycle
    Ahmadian, Mansooreh
    Tyson, John J.
    Peccoud, Jean
    Cao, Yang
    NPJ SYSTEMS BIOLOGY AND APPLICATIONS, 2020, 6 (01)
  • [6] Stochastic Simulation of the Cell Cycle Model for Budding Yeast
    Liu, Di
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2011, 9 (02) : 390 - 405
  • [7] Stochastic Quasi-Newton Methods
    Mokhtari, Aryan
    Ribeiro, Alejandro
    PROCEEDINGS OF THE IEEE, 2020, 108 (11) : 1906 - 1922
  • [8] A stochastic quasi-Newton method for simulation response optimization
    Kao, C
    Chen, SP
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2006, 173 (01) : 30 - 46
  • [9] A Proximal Stochastic Quasi-Newton Algorithm with Dynamical Sampling and Stochastic Line Search
    Zhang, Mengxiang
    Li, Shengjie
    JOURNAL OF SCIENTIFIC COMPUTING, 2025, 102 (01)
  • [10] A Stochastic Model of Size Control in the Budding Yeast Cell Cycle
    Ahmadian, Mansooreh
    Tyson, John
    Cao, Yang
    ACM-BCB'18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2018, : 589 - 590