Mass transfer characteristics of ferrofluids flowing through a microchannel under AC magnetic field

被引:3
|
作者
Akbari, Pariya [1 ]
Haghshenasfard, Masoud [1 ]
Esfahany, Mohsen Nasr [1 ]
Ehsani, Mohammadreza [1 ]
机构
[1] Isfahan Univ Technol, Dept Chem Engn, Esfahan 8415683111, Iran
基金
美国国家科学基金会;
关键词
Gas absorption; Microchannel; Ferrofluid; Magnetic field; LIQUID SEGMENTED FLOW; TAYLOR FLOW; CO2; ABSORPTION; HEAT-TRANSFER; GAS; NANOPARTICLES; ENHANCEMENT; NANOFLUIDS; BUBBLE; SOLUBILITY;
D O I
10.1016/j.icheatmasstransfer.2022.106436
中图分类号
O414.1 [热力学];
学科分类号
摘要
The gas absorption process in a Y-shaped microchannel utilizing magnetic nanofluids stimulated within an alternating current magnetic field (AC mf) was studied. Absorption of CO2 under different operation conditions, ferrofluid concentration, and magnetic field strengths were investigated to analyze the liquid-side overall mass transfer coefficient (KLa), CO2 absorption efficiency (E), nanoparticle enhancement factor (alpha), magnetic field enhancement factor (gamma), and pressure drop (Delta p). The magnetic field strengths were 7, 12.6, and 21 mT accompanied by various ferrofluid concentrations within 0.001-0.004 (v/v). The ferrofluids were water-based colloids of Fe3O4 magnetic nanoparticles. The gas-liquid flow patterns were Taylor flow regime in all experi-ments. Furthermore, the position of the microchannel in the magnetic field was studied as an effective factor in CO2 absorption enhancement. The position in which the microchannel was held on the top inside the magnetic field reflected more gas absorption compared to the other positions. While exerting magnetic field strength of 21 mT, a maximum enhancement of 72.2% was observed for KLa compared to the case in which the magnetic field was absent.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Convective heat transfer characteristics of magnetic nanofluids under vertical magnetic field
    Wang S.
    Luo Z.
    Qing S.
    Yang Z.
    Jia Z.
    Lei J.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2021, 42 (10): : 111 - 115
  • [42] Gas-liquid flow and mass transfer in a microchannel under elevated pressures
    Yao, Chaoqun
    Dong, Zhengya
    Zhao, Yuchao
    Chen, Guangwen
    CHEMICAL ENGINEERING SCIENCE, 2015, 123 : 137 - 145
  • [43] Exploring Heat Transfer Characteristics of Ferrofluid in the Presence of Magnetic Field for Cooling of Solar Photovoltaic Systems
    Singh, Danvendra
    Shyam, Sudip
    Mehta, Balkrishna
    Asfer, Mohammed
    Alshqirate, A. S.
    JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 2019, 11 (04)
  • [44] An Experimental Study on Flow and Heat Transfer Characteristics of Ethanol/Polyalphaolefin Nanoemulsion Flowing Through Circular Minichannels
    Vu Trinh
    Xu, Jiajun
    NANOSCALE RESEARCH LETTERS, 2017, 12
  • [45] Heat transfer and flow features of Al2O3-water nanofluids flowing through a circular microchannel - Experimental results and correlations
    Zhang, Hainan
    Shao, Shuangquan
    Xu, Hongbo
    Tian, Changqing
    APPLIED THERMAL ENGINEERING, 2013, 61 (02) : 86 - 92
  • [46] Mass transfer from a fluid flowing through a porous media
    Myers, T. G.
    Font, F.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 163
  • [47] Numerical investigation on turbulent flow and heat transfer characteristics of ferro-nanofluid flowing in dimpled tube under magnetic field effect
    Gurdal, Mehmet
    Pazarlioglu, Hayati Kadir
    Tekir, Mutlu
    Arslan, Kamil
    Gedik, Engin
    APPLIED THERMAL ENGINEERING, 2022, 200
  • [48] Experimental investigation on convection heat transfer characteristics of ferrofluid in a horizontal channel under a non-uniform magnetic field
    Cheng, Yanhong
    Li, Decai
    APPLIED THERMAL ENGINEERING, 2019, 163
  • [49] Characteristics of the magnetic field under hybrid ac/dc high voltage transmission lines
    Ismail, Hanafy M.
    ELECTRIC POWER SYSTEMS RESEARCH, 2009, 79 (01) : 1 - 7
  • [50] Time-dependent scattering of incident light of various wavelengths in ferrofluids under external magnetic field
    Jin, Jingyu
    Song, Dongxing
    Geng, Jiafeng
    Jing, Dengwei
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2018, 447 : 124 - 133