Complete noncompact manifolds with harmonic curvature

被引:7
作者
Chu, Yawei [1 ,2 ]
机构
[1] Zhengzhou Univ, Dept Math, Zhengzhou 450001, Peoples R China
[2] Fuyang Univ, Sch Math & Computat Sci, Fuyang 236037, Peoples R China
基金
中国国家自然科学基金;
关键词
Harmonic curvature; trace-free curvature tensor; space form; FLAT; DEFORMATION;
D O I
10.1007/s11464-012-0168-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M (n) , g) be an n-dimensional complete noncompact Riemannian manifold with harmonic curvature and positive Sobolev constant. In this paper, by employing an elliptic estimation method, we show that (M (n) , g) is a space form if it has sufficiently small L (n/2)-norms of trace-free curvature tensor and nonnegative scalar curvature. Moreover, we get a gap theorem for (M (n) , g) with positive scalar curvature.
引用
收藏
页码:19 / 27
页数:9
相关论文
共 17 条
[1]  
[Anonymous], 1993, J GEOMETRY
[2]  
[Anonymous], 1968, Ann. Scuola Norm. Sup. Pisa (3)
[3]  
[Anonymous], J GEOM
[4]  
Besse A L, 1987, EINSTEIN MANIFOLDS, P434
[5]  
BOURGUIGNON JP, 1982, LECT NOTES MATH, V949, P35
[6]   A rigidity theorem for complete noncompact Bach-flat manifolds [J].
Chu, Yawei .
JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (02) :516-521
[7]  
Delanoe P., 1992, CONT MATH, V127, P17, DOI 10.1090/conm/127/1155406
[8]  
HAMILTON RS, 1982, J DIFFER GEOM, V17, P255
[9]  
Hebey E., 1996, J. Geom. Anal, V6, P531, DOI [10.1007/BF02921622, DOI 10.1007/BF02921622]
[10]  
HUISKEN G, 1985, J DIFFER GEOM, V21, P47