Exponential model selection (in NMR) using Bayesian probability theory

被引:25
作者
Bretthorst, GL
Hutton, WC
Garbow, JR
Ackerman, JJH
机构
[1] Washington Univ, Dept Radiol, St Louis, MO 63130 USA
[2] Washington Univ, Dept Chem, St Louis, MO 63130 USA
[3] Washington Univ, Dept Internal Med, St Louis, MO 63130 USA
关键词
exponential data analysis; Bayesian probability theory;
D O I
10.1002/cmr.a.20042
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In a companion article in this issue, parameter estimation using exponential models was addressed when the form of the model is known (i.e., when the number of exponentials and whether a constant offset is present are known). In this article, we apply Bayesian probability theory to the problem of determining the functional form of the model. The calculations are implemented using Markov chain Monte Carlo with simulated annealing to draw samples from the joint posterior probability for the parameters and the functional form of the model. Monte Carlo integration is then used to approximate the marginal posterior probabilities for all the parameters, including the number of exponentials and whether a constant offset is present. Examples using empirical data are given to illustrate the calculations. (c) 2005 Wiley Periodicals, Inc.
引用
收藏
页码:64 / 72
页数:9
相关论文
共 10 条
  • [1] [Anonymous], 2012, Probability Theory: The Logic Of Science
  • [2] Bayes T., 1763, Philosophical Transactions, V53, P370, DOI [10.1098/rstl.1763.0053, DOI 10.1098/RSTL.1763.0053]
  • [3] Exponential parameter estimation (in NMR) using Bayesian probability theory
    Bretthorst, GL
    Hutton, WC
    Garbow, JR
    Ackerman, JJH
    [J]. CONCEPTS IN MAGNETIC RESONANCE PART A, 2005, 27A (02) : 55 - 63
  • [4] Goggans PM, 2004, AIP CONF PROC, V707, P59, DOI 10.1063/1.1751356
  • [5] HASTINGS WK, 1970, BIOMETRIKA, V57, P97, DOI 10.1093/biomet/57.1.97
  • [6] EQUATION OF STATE CALCULATIONS BY FAST COMPUTING MACHINES
    METROPOLIS, N
    ROSENBLUTH, AW
    ROSENBLUTH, MN
    TELLER, AH
    TELLER, E
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1953, 21 (06) : 1087 - 1092
  • [7] Neal R. M., 1993, Probabilistic inference using Markov chain Monte Carlo methods
  • [8] Probabilistic data analysis: an introductory guide
    Skilling, J
    [J]. JOURNAL OF MICROSCOPY-OXFORD, 1998, 190 : 28 - 36
  • [9] Spiegelhalter D., 1995, MARKOV CHAIN MONTE C
  • [10] Localized eddy current compensation using quantitative field mapping
    Terpstra, M
    Andersen, PM
    Gruetter, R
    [J]. JOURNAL OF MAGNETIC RESONANCE, 1998, 131 (01) : 139 - 143