Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations

被引:441
作者
Ahn, Jiwoon [1 ]
Cho, Sunghyun [2 ]
Kwak, Suha [3 ]
机构
[1] Kakao Corp, DGIST, Daegu, South Korea
[2] DGIST, Daegu, South Korea
[3] POSTECH, Pohang, South Korea
来源
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019) | 2019年
基金
新加坡国家研究基金会;
关键词
D O I
10.1109/CVPR.2019.00231
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel approach for learning instance segmentation with image-level class labels as supervision. Our approach generates pseudo instance segmentation labels of training images, which are used to train a fully supervised model. For generating the pseudo labels, we first identify confident seed areas of object classes from attention maps of an image classification model, and propagate them to discover the entire instance areas with accurate boundaries. To this end, we propose IRNet, which estimates rough areas of individual instances and detects boundaries between different object classes. It thus enables to assign instance labels to the seeds and to propagate them within the boundaries so that the entire areas of instances can be estimated accurately. Furthermore, IRNet is trained with inter-pixel relations on the attention maps, thus no extra supervision is required. Our method with IRNet achieves an outstanding performance on the PASCAL VOC 2012 dataset, surpassing not only previous state-of-the-art trained with the same level of supervision, but also some of previous models relying on stronger supervision.
引用
收藏
页码:2204 / 2213
页数:10
相关论文
共 50 条
[1]  
[Anonymous], 2018, IEEE T PATTERN ANAL
[2]  
[Anonymous], 2015, P IEEE INT C COMP VI
[3]  
[Anonymous], 2017, P IEEE C COMP VIS PA
[4]  
[Anonymous], 2018, P IEEE C COMP VIS PA
[5]  
[Anonymous], 2017, P IEEE C COMP VIS PA
[6]  
[Anonymous], 2017, P IEEE C COMP VIS PA
[7]  
[Anonymous], P EUR C COMP VIS ECC
[8]  
[Anonymous], P IEEE C COMP VIS PA
[9]  
[Anonymous], 2017, P IEEE C COMP VIS PA
[10]  
[Anonymous], P NEUR INF PROC SYST