Chopped random-basis quantum optimization

被引:296
作者
Caneva, Tommaso [1 ]
Calarco, Tommaso [1 ]
Montangero, Simone [1 ]
机构
[1] Univ Ulm, Inst Quanteninformat Verarbeitung, D-89069 Ulm, Germany
来源
PHYSICAL REVIEW A | 2011年 / 84卷 / 02期
关键词
PHASE-TRANSITION; DYNAMICS; APPROXIMATION; PHYSICS;
D O I
10.1103/PhysRevA.84.022326
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this work, we describe in detail the chopped random basis (CRAB) optimal control technique recently introduced to optimize time-dependent density matrix renormalization group simulations [P. Doria, T. Calarco, and S. Montangero, Phys. Rev. Lett. 106, 190501 (2011)]. Here, we study the efficiency of this control technique in optimizing different quantum processes and we show that in the considered cases we obtain results equivalent to those obtained via different optimal control methods while using less resources. We propose the CRAB optimization as a general and versatile optimal control technique.
引用
收藏
页数:9
相关论文
共 54 条
[21]   SIMULATING PHYSICS WITH COMPUTERS [J].
FEYNMAN, RP .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1982, 21 (6-7) :467-488
[22]   Creation and manipulation of entanglement in spin chains far from equilibrium [J].
Galve, F. ;
Zueco, D. ;
Reuther, G. M. ;
Kohler, S. ;
Haenggi, P. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2010, 180 :237-246
[23]   Quantum limits to dynamical evolution [J].
Giovannetti, V ;
Lloyd, S ;
Maccone, L .
PHYSICAL REVIEW A, 2003, 67 (05) :8
[24]   Preparation of decoherence-free cluster states with optical superlattices [J].
Jiang, Liang ;
Rey, Ana Maria ;
Romero-Isart, Oriol ;
Garcia-Ripoll, Juan Jose ;
Sanpera, Anna ;
Lukin, Mikhail D. .
PHYSICAL REVIEW A, 2009, 79 (02)
[25]   Optimal control of coupled spin dynamics:: design of NMR pulse sequences by gradient ascent algorithms [J].
Khaneja, N ;
Reiss, T ;
Kehlet, C ;
Schulte-Herbrüggen, T ;
Glaser, SJ .
JOURNAL OF MAGNETIC RESONANCE, 2005, 172 (02) :296-305
[26]  
Krotov V. F., 1996, Monographs and Textbooks in Pure and Applied Mathematics, V195
[27]   A short review on entanglement in quantum spin systems [J].
Latorre, J. I. ;
Riera, A. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (50)
[28]   Entanglement entropy in the Lipkin-Meshkov-Glick model -: art. no. 064101 [J].
Latorre, JI ;
Orús, R ;
Rico, E ;
Vidal, J .
PHYSICAL REVIEW A, 2005, 71 (06)
[29]   A pseudospectral method for optimal control of open quantum systems [J].
Li, Jr-Shin ;
Ruths, Justin ;
Stefanatos, Dionisis .
JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (16)
[30]   VALIDITY OF MANY-BODY APPROXIMATION METHODS FOR A SOLVABLE MODEL .I. EXACT SOLUTIONS AND PERTURBATION THEORY [J].
LIPKIN, HJ ;
MESHKOV, N ;
GLICK, AJ .
NUCLEAR PHYSICS, 1965, 62 (02) :188-&