On the Gerber-Shiu function with random discount rate

被引:4
作者
Wang, Houchun [1 ]
Ling, Nengxiang [2 ]
机构
[1] Anhui Jianzhu Univ, Sch Math & Phys, Hefei 230601, Peoples R China
[2] Hefei Univ Technol, Sch Math, Hefei, Peoples R China
关键词
Asymptotic formula; Gerber-Shiu function; Random discount rate; Renewal equation; POISSON RISK MODEL; DEFECTIVE RENEWAL EQUATION; DIVIDEND BARRIER; PENALTY-FUNCTION; RUIN; TIME; DIFFUSION; SURPLUS;
D O I
10.1080/03610926.2014.988265
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study the Gerber-Shiu (G-S) function for the classical risk model, in which the discount rate is generalized from a constant to a random variable. The discounted interest force accumulated process is modeled by a Poisson process and a Gaussian process for the G-S function. In terms of the standard techniques in ruin theory, we derive the integro-differential equation and the defective renewal equation satisfied by the G-S function. Then, the asymptotic formula for the G-S function is obtained using the renewal theory.
引用
收藏
页码:210 / 220
页数:11
相关论文
共 28 条
[1]  
Albrecher H., 2007, Bltter Der DGVFM, V28, P13, DOI [https://doi.org/10.1007/s11857-007-0004-4, DOI 10.1007/S11857-007-0004-4, 10.1007/s11857-007-0004-4]
[2]  
Albrecher H, 2010, N AM ACTUAR J, V14, P420, DOI 10.1080/10920277.2010.10597599
[3]   INTEREST AND MORTALITY RANDOMNESS IN SOME ANNUITIES [J].
BEEKMAN, JA ;
FUELLING, CP .
INSURANCE MATHEMATICS & ECONOMICS, 1990, 9 (2-3) :185-196
[4]   EXTRA RANDOMNESS IN CERTAIN ANNUITY MODELS [J].
BEEKMAN, JA ;
FUELLING, CP .
INSURANCE MATHEMATICS & ECONOMICS, 1992, 10 (04) :275-287
[5]   On a generalization of the Gerber-Shiu function to path-dependent penalties [J].
Biffis, Enrico ;
Morales, Manuel .
INSURANCE MATHEMATICS & ECONOMICS, 2010, 46 (01) :92-97
[6]   A note on scale functions and the time value of ruin for Levy insurance risk processes [J].
Biffis, Enrico ;
Kyprianou, Andreas E. .
INSURANCE MATHEMATICS & ECONOMICS, 2010, 46 (01) :85-91
[7]   On a Risk Model with Surplus-dependent Premium and Tax Rates [J].
Cheung, Eric C. K. ;
Landriault, David .
METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2012, 14 (02) :233-251
[8]   The density of the time to ruin in the classical Poisson risk model [J].
Dickson, David C. M. ;
Willmot, Gordon E. .
ASTIN BULLETIN, 2005, 35 (01) :45-60
[9]   On the time to ruin for Erlang(2) risk processes [J].
Dickson, DCM ;
Hipp, C .
INSURANCE MATHEMATICS & ECONOMICS, 2001, 29 (03) :333-344
[10]   Overshoots and undershoots of Levy processes [J].
Doney, RA ;
Kyprianou, AE .
ANNALS OF APPLIED PROBABILITY, 2006, 16 (01) :91-106