A Meshfree Solver for the MEG Forward Problem

被引:20
作者
Ala, Guido [1 ]
Francomano, Elisa [2 ]
Fasshauer, Gregory E. [3 ]
Ganci, Salvatore [1 ]
McCourt, Michael J. [4 ]
机构
[1] Univ Palermo, Dipartimento Energia Ingn Informaz & Modelli Mate, I-90128 Palermo, Italy
[2] Univ Palermo, Dipartimento Ingn Chim, Gest, Informat,Meccan, I-90128 Palermo, Italy
[3] IIT, Dept Appl Math, Chicago, IL 60616 USA
[4] Univ Colorado, Dept Math & Stat Sci, Denver, CO 80202 USA
关键词
Biomagnetics; magnetoencephalography (MEG); meshfree methods; method of fundamental solutions (MFS); VOLUME CONDUCTOR; EEG; MAGNETOENCEPHALOGRAPHY;
D O I
10.1109/TMAG.2014.2356134
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Non-invasive estimation of brain activity via magnetoencephalography (MEG) involves an inverse problem whose solution requires an accurate and fast forward solver. To this end, we propose the method of fundamental solutions as a meshfree alternative to the boundary element method (BEM). The solution of the MEG forward problem is obtained, via the method of particular solutions, by numerically solving a boundary value problem for the electric scalar potential, derived from the quasi-stationary approximation of Maxwell's equations. The magnetic field is then computed by the Biot-Savart law. Numerical experiments have been carried out in a realistic single-shell head geometry. The proposed solver is compared with a state-of-the-art BEM solver. A good agreement and a reduced computational load show the attractiveness of the meshfree approach.
引用
收藏
页数:4
相关论文
共 14 条
  • [1] A numerical meshless particle method in solving the magnetoencephalography forward problem
    Ala, G.
    Di Blasi, G.
    Francomano, E.
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2012, 25 (5-6) : 428 - 440
  • [2] Carr JC, 2001, COMP GRAPH, P67, DOI 10.1145/383259.383266
  • [3] The method of fundamental solutions for elliptic boundary value problems
    Fairweather, G
    Karageorghis, A
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 1998, 9 (1-2) : 69 - 95
  • [4] Fasshauer G.E., 2007, Meshfree Approximations Methods with Matlab
  • [6] Review on solving the forward problem in EEG source analysis
    Hallez, Hans
    Vanrumste, Bart
    Grech, Roberta
    Muscat, Joseph
    De Clercq, Wim
    Vergult, Anneleen
    D'Asseler, Yves
    Camilleri, Kenneth P.
    Fabri, Simon G.
    Van Huffel, Sabine
    Lemahieu, Ignace
    [J]. JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2007, 4 (1)
  • [7] MAGNETOENCEPHALOGRAPHY - THEORY, INSTRUMENTATION, AND APPLICATIONS TO NONINVASIVE STUDIES OF THE WORKING HUMAN BRAIN
    HAMALAINEN, M
    HARI, R
    ILMONIEMI, RJ
    KNUUTILA, J
    LOUNASMAA, OV
    [J]. REVIEWS OF MODERN PHYSICS, 1993, 65 (02) : 413 - 497
  • [8] REALISTIC CONDUCTIVITY GEOMETRY MODEL OF THE HUMAN HEAD FOR INTERPRETATION OF NEUROMAGNETIC DATA
    HAMALAINEN, MS
    SARVAS, J
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1989, 36 (02) : 165 - 171
  • [9] The collocation points of the fundamental solution method for the potential problem.
    Katsurada, M
    Okamoto, H
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 31 (01) : 123 - 137
  • [10] A common formalism for the integral formulations of the forward EEG problem
    Kybic, J
    Clerc, M
    Abboud, T
    Faugeras, O
    Keriven, R
    Papadopoulo, T
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2005, 24 (01) : 12 - 28