Asymptotic expansion of the sample correlation coefficient under nonnormality

被引:19
作者
Ogasawara, H [1 ]
机构
[1] Otaru Univ, Dept Informat & Management Sci, Otaru, Hokkaido 0478501, Japan
关键词
Edgeworth expansion; correlation coefficient; normormality; fourth cumulants;
D O I
10.1016/j.csda.2004.11.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The 2-term Edgeworth expansion, or the expansion up to order 1/n, of the distribution of the sample correlation coefficient in nonnormal observations is obtained. For the expansion, the formula of the fourth cumulant of the function of sample variances and covariances of the associated observable variables is given. From a simulation, the partially weighted 2-term Edgeworth expansion is found to give smaller errors than those by the single-term or fully weighted 2-term Edgeworth expansions. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:891 / 910
页数:20
相关论文
共 30 条
[1]  
Anderson TW., 1984, INTRO MULTIVARIATE S
[2]  
[Anonymous], 1898, PHILOS T ROYAL SOC A, DOI DOI 10.1098/RSTA.1898.0007
[3]   A local parameterization of orthogonal and semi-orthogonal matrices with applications [J].
Boik, RJ .
JOURNAL OF MULTIVARIATE ANALYSIS, 1998, 67 (02) :244-276
[4]   THE ASYMPTOTIC COVARIANCE-MATRIX OF SAMPLE CORRELATION-COEFFICIENTS UNDER GENERAL CONDITIONS [J].
BROWNE, MW ;
SHAPIRO, A .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1986, 82 :169-176
[5]  
Fisher R.A., 1921, METRON, V1, P3, DOI DOI 10.1093/BIOMET/9.1-2.22
[6]  
Fisher RA, 1915, BIOMETRIKA, V10, P507
[7]  
FUJIKOSHI Y, 1980, BIOMETRIKA, V67, P45
[8]   On the sampling theory of roots of determinantal equations [J].
Girshick, MA .
ANNALS OF MATHEMATICAL STATISTICS, 1939, 10 :203-224
[9]  
Hall P., 1992, BOOTSTRAP EDGEWORTH
[10]  
HOTELLING H, 1953, J R STAT SOC B, V15, P193