ON THE REGULAR GROWTH OF DIRICHLET SERIES ABSOLUTELY CONVERGENT IN A HALF-PLANE

被引:1
作者
Stets', Yu V. [1 ]
Sheremeta, M. M. [1 ]
机构
[1] Lviv Natl Univ, Lvov, Ukraine
关键词
Asymptotic Behavior; Natural Number; Asymptotic Representation; Dirichlet Series; Absolute Convergence;
D O I
10.1007/s11253-011-0543-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the Dirichlet series F(s) = Sigma(infinity)(n=1) a(n) exp{s lambda(n)} g with abscissa of absolute convergence sigma(a) = 0, we establish conditions for (lambda(n)) and (a(n)) under which ln M (sigma, F) = T(R)(1 + o(1)) exp{Q(R)/|sigma|} for sigma up arrow 0, where M(sigma, F) = sup{|F (sigma + it)|: t is an element of R} and T(R) and Q(R) are positive constants.
引用
收藏
页码:797 / 814
页数:18
相关论文
共 8 条
  • [1] Gaisin, 1982, MAT SBORNIK, V117, P412
  • [2] Leontev A.F., 1976, Exponential Series
  • [3] Sheremeta M. M., 1999, MAT STUD, V11, P41
  • [4] Sheremeta M. N., 1998, SIB MAT ZH, V39, P206
  • [5] SHEREMETA MM, 2003, MAT ZAMETKI, V73, P437
  • [6] SUMYK OM, 1999, VISN LVIV U MM, P40
  • [7] Zabolotskii M.V., 1998, UKR MATH J+, V50, P1346, DOI [10.1007/BF02525242, DOI 10.1007/BF02525242]
  • [8] ZELISKO MM, 2006, VISN LVIV U MM, P70