On the interior smoothness of solutions to second-order elliptic equations

被引:14
作者
Gushchin, AK
机构
[1] Steklov Mathematical Institute,
基金
俄罗斯基础研究基金会;
关键词
elliptic equation; function spaces; smoothness of solutions;
D O I
10.1007/s11202-005-0081-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the interior smoothness properties of solutions to a linear second-order uniformly elliptic equation in selfadjoint form without lower-order terms and with measurable bounded coefficients. In terms of membership in a special function space we combine and supplement some properties of solutions such as membership in the Sobolev space W-2,loc(1) and Holder continuity. We show that the membership of solutions in the introduced space which we establish in this article gives some new properties that do not follow from Holder continuity and the membership in W-2,loc(1).
引用
收藏
页码:826 / 840
页数:15
相关论文
共 11 条
[1]  
Giorgi E. De., 1957, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Math. Nat., V3, P25
[2]  
GUSHCHIN AK, 1988, MATH USSR SB+, V137, P19
[3]  
GUSHCHIN AK, 1991, MAT SBORNIK, V182, P787
[4]  
GUSHCHIN AK, 2002, MAT SBORNIK, V193, P17
[5]  
GUSHCHIN AK, IN PRESS DOKL ROSS A
[6]  
GUSHCHIN AK, 2004, DOKL ROSS AKAD NAUK, V396, P15
[7]  
GUSHCHIN AK, 1998, MAT SBORNIK, V189, P53
[8]  
GUSHCHIN AK, 1994, MAT SBORNIK, V185, P121
[9]  
Ladyzhenskaya O. A., 1973, LINEAR QUASILINEAR E