Effect of short-carbon fiber and nano-carbon fiber as reinforcement on microstructure and properties of hot-rolled aluminum matrix composites

被引:8
|
作者
Guo, Ying [1 ]
Li, Wen-quan [1 ]
Liu, Xin-gang [2 ]
Sugio, Kenjiro [1 ]
Ke, Yu-jiao [2 ]
Wang, Kai-yao [2 ]
Liu, Wen-chuang [1 ]
Sasaki, Gen [1 ]
机构
[1] Hiroshima Univ, Grad Sch Adv Sci & Engn, 1-4-1 Kagamiyama, Higashi, Hiroshima 7398527, Japan
[2] Yanshan Univ, Coll Mech Engn, Qinhuangdao 066004, Hebei, Peoples R China
基金
日本学术振兴会;
关键词
MECHANICAL-PROPERTIES; THERMAL-CONDUCTIVITY; SHEAR BANDS; TEXTURE; EVOLUTION; NANOTUBES; DUCTILITY; STRENGTH; FABRICATION;
D O I
10.1007/s10853-022-07909-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The selection of reinforcement is an important part of the design and application of composites. It is important to elucidate the reinforcement diameter's effect on the composites microstructure and properties. In this study, short-carbon fiber (SCF)- and vapor-grown carbon nanofiber (VGCNF)-reinforced aluminum (Al) matrix composites were prepared by spark plasma sintering (SPS). The effects of different reinforcements on the microstructure evolution and properties of the hot-rolled composites were investigated. The results demonstrate that the SCF is more homogeneously distributed in the Al matrix, and the VGCNF is agglomerated because of its smaller size. The nano-hardness value of the interface between VGCNF and Al matrix is 39.91HV, which is lower than the 51.27HV of the interface between SCF and Al matrix. TEM results show that the formation of continuous amorphous carbides gives a well-interfacial bonding between SCF and Al matrix. The gaps between the VGCNF and the Al matrix result in low interfacial hardness. Due to the formation of Al4C3 crystal, the nano-hardness of the interface between SCF and Al matrix is increased by 111.25% after hot rolling. In addition, due to the aggregation between VGCNF, the heat transfer efficiency of VGCNF is 60.73%, lower than 76.91% of SCF. The yield strength of SCF/Al is higher than that of VGCNF/Al before and after hot rolling, which is attributed to the load-bearing effect of SCF and the generation of rotational Gauss components.
引用
收藏
页码:20197 / 20209
页数:13
相关论文
共 50 条
  • [21] Effect of surface silanization of carbon fiber on mechanical properties of carbon fiber reinforced polyurethane composites
    Jiang, Shuai
    Li, Qifeng
    Zhao, Yuhua
    Wang, Junwei
    Kang, Maoqing
    COMPOSITES SCIENCE AND TECHNOLOGY, 2015, 110 : 87 - 94
  • [22] Mechanical and Thermal Properties of Vapor-Grown Carbon Fiber Reinforced Aluminum Matrix Composites by Plasma Sintering
    Xu, Zhe-Feng
    Choi, Yong-Bum
    Matsugi, Kazuhiro
    Li, Dong-Chun
    Sasaki, Gen
    MATERIALS TRANSACTIONS, 2010, 51 (03) : 510 - 515
  • [23] Effect of reinforcement volume fraction and T6 heat treatment on microstructure, thermal and mechanical properties of mesophase pitch-based carbon fiber reinforced aluminum matrix composites
    Zhu, Chengnan
    Wang, Xiaozhen
    Cui, Qifeng
    Gu, Shaojing
    Liu, Kan
    Cai, Yunpeng
    Su, Yishi
    Zhang, Di
    Ouyang, Qiubao
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 834
  • [24] Effect of a multiscale reinforcement by carbon fiber surface treatment with graphene oxide/carbon nanotubes on the mechanical properties of reinforced carbon/carbon composites
    Gao, Bo
    Zhang, Ruliang
    He, Maoshuai
    Sun, Lingchao
    Wang, Chengguo
    Liu, Lei
    Zhao, Lifen
    Cui, Hongzhi
    Cao, Aiping
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2016, 90 : 433 - 440
  • [25] Fiber orientation and flexural properties of short carbon fiber/epoxy composites
    Shimamoto, Daisuke
    Tominaga, Yuichi
    Imai, Yusuke
    Hotta, Yuji
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2016, 124 (01) : 125 - 128
  • [26] Effect of fiber content on the microstructure and mechanical properties of carbon fiber felt reinforced geopolymer composites
    Yan, Shu
    He, Peigang
    Jia, Dechang
    Yang, Zhihua
    Duan, Xiaoming
    Wang, Shengjin
    Zhou, Yu
    CERAMICS INTERNATIONAL, 2016, 42 (06) : 7837 - 7843
  • [27] The influences of carbon nanotubes introduced in three different phases of carbon fiber/pyrolytic carbon/silicon carbide composites on microstructure and properties of their composites
    Wang, Jie
    Zhang, Xiaming
    Miao, Yulong
    Li, Yaoyao
    Xi, Xianfeng
    Zhong, Xiqiang
    Pei, Xueliang
    He, Liu
    Huang, Qing
    CARBON, 2018, 129 : 409 - 414
  • [28] Effect of cellulose nano fiber (CNF) on fatigue performance of carbon fiber fabric composites
    Shao, Yongzheng
    Yashiro, Tomoya
    Okubo, Kazuya
    Fujii, Toru
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2015, 76 : 244 - 254
  • [29] Reducing Surface Roughness of 3D Printed Short-Carbon Fiber Reinforced Composites
    Maier, Raluca
    Bucaciuc, Sebastian-Gabriel
    Mandoc, Andrei Cristian
    MATERIALS, 2022, 15 (20)
  • [30] Microstructure and Properties of Powder Composites with Aluminum Matrix Reinforced with Carbon Nanomaterials
    Roy, Utpal Kumar
    Mondal, Subrata
    METAL SCIENCE AND HEAT TREATMENT, 2022, 64 (3-4) : 156 - 162