Fuel cell systems optimisation - Methods and strategies

被引:70
作者
Ang, Sheila Mae C. [1 ,2 ]
Fraga, Eric S. [1 ]
Brandon, Nigel P. [3 ]
Samsatli, Nouri J. [4 ]
Brett, Daniel J. L. [1 ]
机构
[1] UCL, Dept Chem Engn, London WC1E 7JE, England
[2] Univ Philippines, Dept Chem Engn, Quezon City 1101, Philippines
[3] Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, London SW7 2AZ, England
[4] Univ London Imperial Coll Sci Technol & Med, Ctr Proc Syst Engn, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
Fuel cell; Optimisation; Design; Modelling; MICRO-COMBINED HEAT; PEM FUEL; OPTIMAL-DESIGN; MULTIOBJECTIVE OPTIMIZATION; OPTIMAL SYNTHESIS/DESIGN; POLYGENERATION SYSTEM; SIZING OPTIMIZATION; DYNAMIC SIMULATION; POWER-GENERATION; COMBINED-CYCLE;
D O I
10.1016/j.ijhydene.2011.08.053
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper reviews the current state of modelling and optimisation with regard to fuel cell systems design. The existing models for portable, stationary and transportation fuel cell systems are identified and characterised by approach, state, system boundary, spatial dimension and complexity or detail. The different model-based design approaches such as parametric study, single-objective optimisation and multi-objective optimisation performed using fuel cell system models are summarised. A case study on the design of a fuel cell micro-cogeneration plant is presented to illustrate the use of modelling and optimisation in generating different design alternatives that contain trade-offs between competing objectives. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:14678 / 14703
页数:26
相关论文
共 126 条
  • [31] COMSOL, MULT US GUID
  • [32] Image Thresholding Using TRIBES, a Parameter-Free Particle Swarm Optimization Algorithm
    Cooren, Yann
    Nakib, Amir
    Siarry, Patrick
    [J]. LEARNING AND INTELLIGENT OPTIMIZATION, 2008, 5313 : 81 - 94
  • [33] Selective CO methanation catalysts for fuel processing applications
    Dagle, Robert A.
    Wang, Yong
    Xia, Guan-Guang
    Strohm, James J.
    Holladay, Jamelyn
    Palo, Daniel R.
    [J]. APPLIED CATALYSIS A-GENERAL, 2007, 326 (02) : 213 - 218
  • [34] Heat and Mass Transport in Proton Exchange Membrane Fuel CellsA Review
    Das, Sarit K.
    Bansode, Annasaheb S.
    [J]. HEAT TRANSFER ENGINEERING, 2009, 30 (09) : 691 - 719
  • [35] Dayton D.C., 2001, FUEL CELL INTEGRATIO
  • [36] Diwekar UM., 2020, INTRO APPL OPTIMIZAT
  • [37] Computational modelling of polymer electrolyte membrane (PEM) fuel cells: Challenges and opportunities
    Djilali, N.
    [J]. ENERGY, 2007, 32 (04) : 269 - 280
  • [38] Carbonised template molecular sieve silica membranes in fuel processing systems: permeation, hydrostability and regeneration
    Duke, MC
    da Costa, JCD
    Lu, GQ
    Petch, M
    Gray, P
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2004, 241 (02) : 325 - 333
  • [39] Challenges and opportunities of thermal management issues related to fuel cell technology and modeling
    Faghri, A
    Guo, Z
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2005, 48 (19-20) : 3891 - 3920
  • [40] Federal Energy Management Program, FUEL CELLS BACK POW