M-Series Nonfullerene Acceptors with Varied Fluorinated End Groups: Crystal Structure, Intermolecular Interaction, Charge Transport, and Photovoltaic Performance

被引:8
作者
Li, Zhijian [1 ,2 ]
Ma, Xiaoling [3 ]
Liao, Ruochuan [1 ,2 ]
Tu, Qisheng [1 ]
Ma, Yunlong [1 ]
Zheng, Qingdong [1 ]
机构
[1] Chinese Acad Sci, Fujian Inst Res Struct Matter, State Key Lab Struct Chem, Fuzhou 350002, Fujian, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Beijing Jiaotong Univ, Sch Sci, Beijing 100044, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
fluorinated end groups; intermolecular interaction; nonfullerene acceptors; pi-pi packing; ORGANIC SOLAR-CELLS; ELECTRON-ACCEPTORS; POLYMER; ORIENTATION; EFFICIENCY; DONOR;
D O I
10.1002/solr.202200119
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Intermolecular interaction of nonfullerene acceptors (NFAs) is essential for controlling their photovoltaic performance. Fluorinated substituents attached at the end groups of NFAs can significantly affect their frontier molecular orbitals and intermolecular interactions. Herein, four heteroheptacene-based NFAs (ML-1F, ML-2FO, ML-2FM, and ML-2FP) with different fluorinated end groups are designed, synthesized, and characterized. The impact of the end group on the crystal structures, optical, electrochemical, charge transport, and photovoltaic properties of these NFAs are systematically studied. In comparison with the acceptor with monofluorinated end groups, the acceptors with difluorinated end groups show reduced bandgaps and downshifted energy levels. Single-crystal results demonstrate that the intermolecular interactions including the pi-pi stacking distance and molecular aggregation behavior of these acceptors are also affected by the variation of end groups thereby leading to the acceptors with varied charge transport properties. In combination with the polymer donor of PM6, ML-2FM exhibits the highest power conversion efficiency (PCE) of 15.33% with a short-circuit current density of 23.73 mA cm(-2) and a fill factor of 0.734. However, ML-2FP displays an inferior PCE of 10.48% which is lower than that of ML-1F (11.41% PCE). The results show that the fluorine substituent number and position of end group are of vital importance in determining their photovoltaic performance.
引用
收藏
页数:11
相关论文
共 44 条
[11]   Fused Nonacyclic Electron Acceptors for Efficient Polymer Solar Cells [J].
Dai, Shuixing ;
Zhao, Fuwen ;
Zhang, Qianqian ;
Lau, Tsz-Ki ;
Li, Tengfei ;
Liu, Kuan ;
Ling, Qidan ;
Wang, Chunru ;
Lu, Xinhui ;
You, Wei ;
Zhan, Xiaowei .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (03) :1336-1343
[12]   Fabrication of High VOC Organic Solar Cells with a Non-Halogenated Solvent and the Effect of Substituted Groups for "Same-A-Strategy" Material Combinations [J].
Dai, Tingting ;
Lei, Peng ;
Zhang, Bao ;
Tang, Ailing ;
Geng, Yanfang ;
Zeng, Qingdao ;
Zhou, Erjun .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (18) :21556-21564
[13]   Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells [J].
Deng, Dan ;
Zhang, Yajie ;
Zhang, Jianqi ;
Wang, Zaiyu ;
Zhu, Lingyun ;
Fang, Jin ;
Xia, Benzheng ;
Wang, Zhen ;
Lu, Kun ;
Ma, Wei ;
Wei, Zhixiang .
NATURE COMMUNICATIONS, 2016, 7
[14]   Formation of Vitrified Solid Solution Enables Simultaneously Efficient and Stable Organic Solar Cells [J].
Fan, Baobing ;
Gao, Wei ;
Wang, Ying ;
Zhong, Wenkai ;
Lin, Francis ;
Li, Wen Jung ;
Huang, Fei ;
Yu, Kin-Man ;
Jen, Alex K-Y .
ACS ENERGY LETTERS, 2021, 6 (10) :3522-3529
[15]   Synergistic Effects of Side-Chain Engineering and Fluorination on Small Molecule Acceptors to Simultaneously Broaden Spectral Response and Minimize Voltage Loss for 13.8% Efficiency Organic Solar Cells [J].
Fan, Qunping ;
Su, Wenyan ;
Zhang, Ming ;
Wu, Jingnan ;
Jiang, Yufeng ;
Guo, Xia ;
Liu, Feng ;
Russell, Thomas P. ;
Zhang, Maojie ;
Li, Yongfang .
SOLAR RRL, 2019, 3 (11)
[16]   Fluorine-Substituted Dithienylbenzodiimide-Based n-Type Polymer Semiconductors for Organic Thin-Film Transistors [J].
Feng, Kui ;
Zhang, Xianhe ;
Wu, Ziang ;
Shi, Yongqiang ;
Su, Mengyao ;
Yang, Kun ;
Wan, Yang ;
Sun, Huiliang ;
Min, Jie ;
Zhang, Yujie ;
Cheng, Xing ;
Woo, Han Young ;
Guo, Xugang .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (39) :35924-35934
[17]   Low-Bandgap Porphyrins for Highly Efficient Organic Solar Cells: Materials, Morphology, and Applications [J].
Gao, Ke ;
Kan, Yuanyuan ;
Chen, Xuebin ;
Liu, Feng ;
Kan, Bin ;
Nian, Li ;
Wan, Xiangjian ;
Chen, Yongsheng ;
Peng, Xiaobin ;
Russell, Thomas P. ;
Cao, Yong ;
Jen, Alex K-Y .
ADVANCED MATERIALS, 2020, 32 (32)
[18]   Compromising Charge Generation and Recombination with Asymmetric Molecule for High-Performance Binary Organic Photovoltaics with Over 18% Certified Efficiency [J].
He, Chengliang ;
Bi, Zhaozhao ;
Chen, Zeng ;
Guo, Jing ;
Xia, Xinxin ;
Lu, Xinhui ;
Min, Jie ;
Zhu, Haiming ;
Ma, Wei ;
Zuo, Lijian ;
Chen, Hongzheng .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (18)
[19]   18.5% Efficiency Organic Solar Cells with a Hybrid Planar/Bulk Heterojunction [J].
Hong, Ling ;
Yao, Huifeng ;
Cui, Yong ;
Bi, Pengqing ;
Zhang, Tao ;
Cheng, Yongxin ;
Zu, Yunfei ;
Qin, Jinzhao ;
Yu, Runnan ;
Ge, Ziyi ;
Hou, Jianhui .
ADVANCED MATERIALS, 2021, 33 (43)
[20]   From Fullerene-Polymer to All-Polymer Solar Cells: The Importance of Molecular Packing, Orientation, and Morphology Control [J].
Kang, Hyunbum ;
Lee, Wonho ;
Oh, Jiho ;
Kim, Taesu ;
Lee, Changyeon ;
Kim, Bumjoon J. .
ACCOUNTS OF CHEMICAL RESEARCH, 2016, 49 (11) :2424-2434