A parameter robust numerical method for a two dimensional reaction-diffusion problem

被引:73
作者
Clavero, C [1 ]
Gracia, JL
O'Riordan, E
机构
[1] Univ Zaragoza, Dept Matemat Aplicada, Zaragoza, Spain
[2] Dublin City Univ, Sch Math Studies, Dublin 9, Ireland
关键词
reaction-diffusion; uniform convergence; Shihskin mesh; second order;
D O I
10.1090/S0025-5718-05-01762-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper a singularly perturbed reaction-diffusion partial differential equation in two space dimensions is examined. By means of an appropriate decomposition, we describe the asymptotic behaviour of the solution of problems of this kind. A central finite difference scheme is constructed for this problem which involves an appropriate Shishkin mesh. We prove that the numerical approximations are almost second order uniformly convergent ( in the maximum norm) with respect to the singular perturbation parameter. Some numerical experiments are given that illustrate in practice the theoretical order of convergence established for the numerical method.
引用
收藏
页码:1743 / 1758
页数:16
相关论文
共 17 条
[1]  
[Anonymous], 1992, DISCRETE APPROXIMATI
[2]   Anisotropic mesh refinement for a singularly perturbed reaction diffusion model problem [J].
Apel, T ;
Lube, G .
APPLIED NUMERICAL MATHEMATICS, 1998, 26 (04) :415-433
[3]  
BUTUZOV VF, 1973, DIFF URAVN, V9, P1274
[4]  
Farrell P.A., 2000, Applied Mathematics (Boca Raton)
[5]   DIFFERENTIABILITY PROPERTIES OF SOLUTIONS OF THE EQUATION -EPSILON-2-DELTA-U+RU=F(X,Y) IN A SQUARE [J].
HAN, H ;
KELLOGG, RB .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (02) :394-408
[6]  
Ladyzhenskaya O., 1968, LINEAR QUASILINEAR E, DOI DOI 10.1090/MMONO/023
[7]   Uniformly convergent finite element methods for singularly perturbed elliptic boundary value problems I: Reaction-diffusion type [J].
Li, J ;
Navon, IM .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1998, 35 (03) :57-70
[8]   Layer-adapted meshes for convection-diffusion problems [J].
Linss, T .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2003, 192 (9-10) :1061-1105
[9]  
Miller JJ, 2012, Fitted numerical methods for singular perturbation problems
[10]  
Miller JJH., 1998, Math. Proc. R. Ir. Acad, V98, P173