Tin and Tin Compound Materials as Anodes in Lithium-Ion and Sodium-Ion Batteries: A Review

被引:77
|
作者
Mou, Haoyi [1 ]
Xiao, Wei [1 ]
Miao, Chang [1 ]
Li, Rui [1 ]
Yu, Liming [1 ]
机构
[1] Yangtze Univ, Coll Chem & Environm Engn, Jingzhou, Peoples R China
来源
FRONTIERS IN CHEMISTRY | 2020年 / 8卷
基金
中国国家自然科学基金;
关键词
tin; tin compound; anode; lithium-ion batteries; sodium-ion batteries; HIGH-PERFORMANCE ANODES; NITROGEN-DOPED GRAPHENE; CYCLE-STABLE ANODE; SITU X-RAY; HIGH-CAPACITY; ELECTROCHEMICAL PERFORMANCE; SNS2; NANOSHEETS; SNO2; NANOPARTICLES; CATHODE MATERIALS; HOLLOW SPHERES;
D O I
10.3389/fchem.2020.00141
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Tin and tin compounds are perceived as promising next-generation lithium (sodium)-ion batteries anodes because of their high theoretical capacity, low cost and proper working potentials. However, their practical applications are severely hampered by huge volume changes during Li+ (Na+) insertion and extraction processes, which could lead to a vast irreversible capacity loss and short cycle life. The significance of morphology design and synergic effects-through combining compatible compounds and/or metals together-on electrochemical properties are analyzed to circumvent these problems. In this review, recent progress and understanding of tin and tin compounds used in lithium (sodium)-ion batteries have been summarized and related approaches to optimize electrochemical performance are also pointed out. Superiorities and intrinsic flaws of the above-mentioned materials that can affect electrochemical performance are discussed, aiming to provide a comprehensive understanding of tin and tin compounds in lithium(sodium)-ion batteries.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Carbonaceous Materials as Anodes for Lithium-Ion and Sodium-Ion Batteries
    Nikgoftar, Koorosh
    Reddy, Anil Kumar Madikere Raghunatha
    Reddy, Mogalahalli Venkatashamy
    Zaghib, Karim
    BATTERIES-BASEL, 2025, 11 (04):
  • [2] Electrochemical Performance of Porous Carbon/Tin Composite Anodes for Sodium-Ion and Lithium-Ion Batteries
    Xu, Yunhua
    Zhu, Yujie
    Liu, Yihang
    Wang, Chunsheng
    ADVANCED ENERGY MATERIALS, 2013, 3 (01) : 128 - 133
  • [3] Tin oxide-based anodes for both lithium-ion and sodium-ion batteries
    Kebede, Mesfin A.
    CURRENT OPINION IN ELECTROCHEMISTRY, 2020, 21 : 182 - 187
  • [4] Applications of Tin Sulfide-Based Materials in Lithium-Ion Batteries and Sodium-Ion Batteries
    Shan, Yuying
    Li, Yan
    Pang, Huan
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (23)
  • [5] Tin nanoparticles encapsulated in graphene backboned carbonaceous foams as high-performance anodes for lithium-ion and sodium-ion storage
    Luo, Bin
    Qiu, Tengfei
    Ye, Delai
    Wang, Lianzhou
    Zhi, Linjie
    NANO ENERGY, 2016, 22 : 232 - 240
  • [6] Stannate-Based Materials as Anodes in Lithium-Ion and Sodium-Ion Batteries: A Review
    Duan, You-Kang
    Li, Zhi-Wei
    Zhang, Shi-Chun
    Su, Tong
    Zhang, Zhi-Hong
    Jiao, Ai-Jun
    Fu, Zhen-Hai
    MOLECULES, 2023, 28 (13):
  • [7] Effect of pulverisation on sulfide and tin antimonide anodes for sodium-ion batteries
    Priyanka, P.
    Nalini, B.
    Soundarya, G. G.
    Selvin, P. Christopher
    Dutta, Dimple P.
    FRONTIERS IN ENERGY RESEARCH, 2023, 11
  • [8] Stabilizing Tin Anodes in Sodium-Ion Batteries by Alloying with Silicon
    Sayed, Sayed Youssef
    Kalisvaart, W. Peter
    Luber, Erik J.
    Olsen, Brian C.
    Buriak, Jillian M.
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (10) : 9950 - 9962
  • [9] Tin Oxide Based Nanomaterials and Their Application as Anodes in Lithium-Ion Batteries and Beyond
    Zoller, Florian
    Boehm, Daniel
    Bein, Thomas
    Fattakhova-Rohlfing, Dina
    CHEMSUSCHEM, 2019, 12 (18) : 4140 - 4159
  • [10] Ternary tin selenium sulfide (SnSe0.5S0.5) nano alloy as the high-performance anode for lithium-ion and sodium-ion batteries
    Tang, Qiming
    Cui, Yanhui
    Wu, Junwei
    Qu, Deyang
    Baker, Andrew P.
    Ma, Yiheng
    Song, Xiaona
    Liu, Yanchen
    NANO ENERGY, 2017, 41 : 377 - 386