Extension of Pauli's Theorem to Clifford Algebras

被引:17
作者
Shirokov, D. S. [1 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Moscow 119333, Russia
关键词
DOKLADY Mathematic; Clifford Algebra; Invertible Element; Gamma Matrice; Steklov Mathematical Institute;
D O I
10.1134/S1064562411060329
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Analogues of Pauli's theorem are proved for arbitrary two sets consisting of an even or odd number of elements satisfying the defining relations of the Clifford algebra. Given two sets of square complex matrices of some order, there exists an unique matrix. The vector subspaces spanned by the elements are indexed by ordered multi-indices of length k. For the real Clifford algebra of odd dimension, the corresponding sets generate a basis of the Clifford algebra or take the values ∓e and then the sets do not generate a basis.
引用
收藏
页码:699 / 701
页数:3
相关论文
共 4 条
  • [1] Lounesto P., 2001, LECT NOTE SERIES, V286
  • [2] Unitary spaces on Clifford algebras
    Marchuk, N. G.
    Shirokov, D. S.
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2008, 18 (02) : 237 - 254
  • [3] Pauli W., 1936, ANN I H POINCARE, V6
  • [4] Zhelnorovich VA., 1982, THEORY SPINORS ITS A