Some high-order difference schemes for the distributed-order differential equations

被引:88
作者
Gao, Guang-hua [1 ]
Sun, Hai-wei [2 ]
Sun, Zhi-zhong [3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Sci, Nanjing 210023, Jiangsu, Peoples R China
[2] Univ Macau, Dept Math, Macau, Peoples R China
[3] Southeast Univ, Dept Math, Nanjing 210096, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Distributed-order differential equations; High-order approximation; Fractional derivative; Difference scheme; Stability; Convergence; FRACTIONAL DIFFUSION EQUATION; ANOMALOUS SUBDIFFUSION EQUATION; NEUMANN BOUNDARY-CONDITIONS; HIGH SPATIAL ACCURACY; SUB-DIFFUSION; WAVE EQUATION; NUMERICAL-SOLUTION; APPROXIMATIONS; STABILITY; SYSTEM;
D O I
10.1016/j.jcp.2015.05.047
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Two difference schemes are derived for both one-dimensional and two-dimensional distributed-order differential equations. It is proved that the schemes are unconditionally stable and convergent in an L-1(L-infinity) norm with the convergence orders O(tau(2)+ h(2)+ Delta alpha(2)) and O(tau(2)+ h(4)+ Delta alpha(4)) , respectively, where tau, h and Delta alpha are the step sizes in time, space and distributed-order variables. Several numerical examples are given to confirm the theoretical results. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:337 / 359
页数:23
相关论文
共 38 条
[1]  
Andreev V.B., 1976, DIFFERENCE METHODS E
[2]   A high order schema for the numerical solution of the fractional ordinary differential equations [J].
Cao, Junying ;
Xu, Chuanju .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 238 :154-168
[3]  
Caputo M., 1969, Elasticita e dissipazione
[4]   A Fourier method for the fractional diffusion equation describing sub-diffusion [J].
Chen, Chang-Ming ;
Liu, F. ;
Turner, I. ;
Anh, V. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 227 (02) :886-897
[5]   NUMERICAL SCHEMES WITH HIGH SPATIAL ACCURACY FOR A VARIABLE-ORDER ANOMALOUS SUBDIFFUSION EQUATION [J].
Chen, Chang-Ming ;
Liu, F. ;
Anh, V. ;
Turner, I. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (04) :1740-1760
[6]   HIGH ORDER ALGORITHMS FOR THE FRACTIONAL SUBSTANTIAL DIFFUSION EQUATION WITH TRUNCATED LEVY FLIGHTS [J].
Chen, Minghua ;
Deng, Weihua .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (02) :A890-A917
[7]   Convergence analysis of high-order compact alternating direction implicit schemes for the two-dimensional time fractional diffusion equation [J].
Cui, Mingrong .
NUMERICAL ALGORITHMS, 2013, 62 (03) :383-409
[8]   Compact finite difference method for the fractional diffusion equation [J].
Cui, Mingrong .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (20) :7792-7804
[9]   Numerical analysis for distributed-order differential equations [J].
Diethelm, Kai ;
Ford, Neville J. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 225 (01) :96-104
[10]  
Dimitrov Dim14 Yuri, 2014, J. Fract. Calc. Appl., V5