Phase-field crystal model for a diamond-cubic structure

被引:17
作者
Chan, W. L. [1 ]
Pisutha-Arnond, N. [2 ]
Thornton, K. [1 ]
机构
[1] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
[2] King Mongkuts Inst Technol Ladkrabang, Fac Engn, Dept Ind Engn, Bangkok, Thailand
来源
PHYSICAL REVIEW E | 2015年 / 91卷 / 05期
基金
美国国家科学基金会;
关键词
Liquids - Crystal structure - Phase interfaces;
D O I
10.1103/PhysRevE.91.053305
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a structural phase-field crystal model [M. Greenwood et al., Phys. Rev. Lett. 105, 045702 (2010)] that yields a stable dc structure. The stabilization of a dc structure is accomplished by constructing a two-body direct correlation function (DCF) approximated by a combination of two Gaussian functions in Fourier space. A phase diagram containing a dc-liquid phase coexistence region is calculated for this model. We examine the energies of solid-liquid interfaces with normals along the [100], [110], and [111] directions. The dependence of the interfacial energy on a temperature parameter, which controls the heights of the peaks in the two-body DCF, is described by a Gaussian function. Furthermore, the dependence of the interfacial energy on the peak widths of the two-body DCF, which controls the excess energy associated with interfaces, defects, and strain, is described by an inverse power law. These relationships can be used to parametrize the phase-field crystal model for the dc structure to match solid-liquid interfacial energies to those measured experimentally or calculated from atomistic simulations.
引用
收藏
页数:9
相关论文
共 30 条
[1]   Anisotropy of crystal-melt interfacial free energy of silicon by simulation [J].
Apte, Pankaj A. ;
Zeng, X. C. .
APPLIED PHYSICS LETTERS, 2008, 92 (22)
[2]   The Quickhull algorithm for convex hulls [J].
Barber, CB ;
Dobkin, DP ;
Huhdanpaa, H .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1996, 22 (04) :469-483
[3]   Diffusive atomistic dynamics of edge dislocations in two dimensions [J].
Berry, J ;
Grant, M ;
Elder, KR .
PHYSICAL REVIEW E, 2006, 73 (03) :1-12
[4]   Defect stability in phase-field crystal models: Stacking faults and partial dislocations [J].
Berry, Joel ;
Provatas, Nikolas ;
Rottler, Joerg ;
Sinclair, Chad W. .
PHYSICAL REVIEW B, 2012, 86 (22)
[5]   Simulation of an atomistic dynamic field theory for monatomic liquids: Freezing and glass formation [J].
Berry, Joel ;
Elder, K. R. ;
Grant, Martin .
PHYSICAL REVIEW E, 2008, 77 (06)
[6]   Melting at dislocations and grain boundaries: A phase field crystal study [J].
Berry, Joel ;
Elder, K. R. ;
Grant, Martin .
PHYSICAL REVIEW B, 2008, 77 (22)
[7]   Direct calculation of the crystal-melt interfacial free energies for continuous potentials: Application to the Lennard-Jones system [J].
Davidchack, RL ;
Laird, BB .
JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (16) :7651-7657
[8]  
De Graef M., 2007, STRUCTURAL MAT INTRO
[9]   Phase-field crystal modeling and classical density functional theory of freezing [J].
Elder, K. R. ;
Provatas, Nikolas ;
Berry, Joel ;
Stefanovic, Peter ;
Grant, Martin .
PHYSICAL REVIEW B, 2007, 75 (06)
[10]  
Elder KR, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.051605