Blind restoration of astronomical image based on deep attention generative adversarial neural network

被引:0
|
作者
Luo, Lin [1 ]
Bao, Jiaqi [1 ]
Li, Jinlong [1 ]
Gao, Xiaorong [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Phys Sci & Technol, Chengdu, Peoples R China
基金
中国国家自然科学基金;
关键词
atmospheric turbulence; astronomical image; generative adversarial network; ATMOSPHERIC-TURBULENCE; DECONVOLUTION METHOD;
D O I
10.1117/1.OE.61.1.013101
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The imaging quality of astronomical targets observed by ground-based telescopes is affected by atmospheric turbulence and the image resolution is seriously reduced. A deep attention generative adversarial network is proposed to restore the astronomical image and to learn the end-to-end imaging law between the blurred image and the ground truth image from image dataset directly. The attention mechanism module is designed to improve the performance of the network. Based on the conventional theory of atmospheric imaging of telescopes and combining optical system parameters, a series of astronomical images are simulated to establish a dataset for training networks. The proposed method is verified by simulated test image and real astronomical image. The experimental results show that the proposed method can effectively eliminate the influence of atmospheric turbulence and improve the resolution of astronomical images. We demonstrate the possible and good prospects for future applications of deep learning to high-resolution imaging of astronomical images. (C) 2021 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Image restoration of motion artifacts in cardiac arteries and vessels based on a generative adversarial network
    Deng, Fuquan
    Wan, Qian
    Zeng, Yingting
    Shi, Yanbin
    Wu, Huiying
    Wu, Yu
    Xu, Weifeng
    Mok, Greta S. P.
    Zhang, Xiaochun
    Hu, Zhanli
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2022, 12 (05) : 2755 - 2766
  • [42] Presentation Attack Face Image Generation Based on a Deep Generative Adversarial Network
    Dat Tien Nguyen
    Tuyen Danh Pham
    Batchuluun, Ganbayar
    Noh, Kyoung Jun
    Park, Kang Ryoung
    SENSORS, 2020, 20 (07) : 1 - 25
  • [43] A generative adversarial network based on deep supervision for anatomical and functional image fusion
    Liu, Shiqiang
    Li, Weisheng
    Wang, Guofen
    Huang, Yuping
    Zhang, Yin
    He, Dan
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 100
  • [44] Image Dehazing Based on Generative Adversarial Network
    Huang S.
    Wang B.
    Li H.
    Yang Y.
    Hu W.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2021, 34 (11): : 990 - 1003
  • [45] Image Demosaicing Based on Generative Adversarial Network
    Luo, Jingrui
    Wang, Jie
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [46] Attention-Based Generative Adversarial Network for Semi-supervised Image Classification
    Xiang, Xuezhi
    Yu, Zeting
    Lv, Ning
    Kong, Xiangdong
    El Saddik, Abdulmotaleb
    NEURAL PROCESSING LETTERS, 2020, 51 (02) : 1527 - 1540
  • [47] Attention-Based Generative Adversarial Network for Semi-supervised Image Classification
    Xuezhi Xiang
    Zeting Yu
    Ning Lv
    Xiangdong Kong
    Abdulmotaleb El Saddik
    Neural Processing Letters, 2020, 51 : 1527 - 1540
  • [48] Single-Image Snow Removal Based on an Attention Mechanism and a Generative Adversarial Network
    Jia, Aiwen
    Jia, Zhen-Hong
    Yang, Jie
    Kasabov, Nikola K.
    IEEE ACCESS, 2021, 9 : 12852 - 12860
  • [49] Unsupervised image-to-image translation with multiscale attention generative adversarial network
    Wang, Fasheng
    Zhang, Qing
    Zhao, Qianyi
    Wang, Mengyin
    Sun, Fuming
    APPLIED INTELLIGENCE, 2024, 54 (08) : 6558 - 6578
  • [50] Fiber bundle image restoration using Conditional Generative Adversarial Network
    Xu, Baoteng
    Liu, Jialin
    Zhou, Wei
    Xiong, Daxi
    Yang, Xibin
    AOPC 2020: DISPLAY TECHNOLOGY; PHOTONIC MEMS, THZ MEMS, AND METAMATERIALS; AND AI IN OPTICS AND PHOTONICS, 2020, 11565