Blind restoration of astronomical image based on deep attention generative adversarial neural network

被引:0
|
作者
Luo, Lin [1 ]
Bao, Jiaqi [1 ]
Li, Jinlong [1 ]
Gao, Xiaorong [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Phys Sci & Technol, Chengdu, Peoples R China
基金
中国国家自然科学基金;
关键词
atmospheric turbulence; astronomical image; generative adversarial network; ATMOSPHERIC-TURBULENCE; DECONVOLUTION METHOD;
D O I
10.1117/1.OE.61.1.013101
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The imaging quality of astronomical targets observed by ground-based telescopes is affected by atmospheric turbulence and the image resolution is seriously reduced. A deep attention generative adversarial network is proposed to restore the astronomical image and to learn the end-to-end imaging law between the blurred image and the ground truth image from image dataset directly. The attention mechanism module is designed to improve the performance of the network. Based on the conventional theory of atmospheric imaging of telescopes and combining optical system parameters, a series of astronomical images are simulated to establish a dataset for training networks. The proposed method is verified by simulated test image and real astronomical image. The experimental results show that the proposed method can effectively eliminate the influence of atmospheric turbulence and improve the resolution of astronomical images. We demonstrate the possible and good prospects for future applications of deep learning to high-resolution imaging of astronomical images. (C) 2021 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Research on Embroidery Image Restoration Based on Improved Deep Convolutional Generative Adversarial Network
    Liu Yixuan
    Ge Guangying
    Qi Zhenling
    Li Zhenxuan
    Sun Fulin
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (20)
  • [2] Image Restoration Based on Generative Adversarial Networks with Hybrid Attention Mechanisms
    You, Zhonghe
    Zhang, Xindong
    2024 5TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATION, ICCEA 2024, 2024, : 1007 - 1012
  • [3] Vehicle radiation image restoration based on a generative adversarial network
    Leng Z.
    Sun Y.
    Tong J.
    Wang Z.
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2022, 62 (10): : 1691 - 1696
  • [4] Blind image separation based on attentional generative adversarial network
    Sun, Xiao
    Xu, Jindong
    Ma, Yongli
    Zhao, Tianyu
    Ou, Shifeng
    Peng, Lizhi
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2022, 13 (03) : 1397 - 1404
  • [5] Blind image separation based on attentional generative adversarial network
    Xiao Sun
    Jindong Xu
    Yongli Ma
    Tianyu Zhao
    Shifeng Ou
    Lizhi Peng
    Journal of Ambient Intelligence and Humanized Computing, 2022, 13 : 1397 - 1404
  • [6] Constrained adversarial loss for generative adversarial network-based faithful image restoration
    Kim, Dong-Wook
    Chung, Jae-Ryun
    Kim, Jongho
    Lee, Dae Yeol
    Jeong, Se Yoon
    Jung, Seung-Won
    ETRI JOURNAL, 2019, 41 (04) : 415 - 425
  • [7] Underwater image restoration based on perceptually optimized generative adversarial network
    Wang, Peng
    Chen, Haixiu
    Xu, Weihua
    Jin, Suqin
    JOURNAL OF ELECTRONIC IMAGING, 2020, 29 (03)
  • [8] Dunhuang murals image restoration method based on generative adversarial network
    Hui Ren
    Ke Sun
    Fanhua Zhao
    Xian Zhu
    Heritage Science, 12
  • [9] Restoration of Underwater Distorted Image Sequence Based on Generative Adversarial Network
    He, Changxin
    Zhang, Zhen
    PROCEEDINGS OF 2019 IEEE 8TH JOINT INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL INTELLIGENCE CONFERENCE (ITAIC 2019), 2019, : 866 - 870
  • [10] Dunhuang murals image restoration method based on generative adversarial network
    Ren, Hui
    Sun, Ke
    Zhao, Fanhua
    Zhu, Xian
    HERITAGE SCIENCE, 2024, 12 (01)