Electroactive 3D printable poly(3,4-ethylenedioxythiophene)-graft-poly(ε-caprolactone) copolymers as scaffolds for muscle cell alignment

被引:28
作者
Dominguez-Alfaro, Antonio [1 ,2 ,3 ]
Criado-Gonzalez, Miryam [1 ,2 ]
Gabirondo, Elena [1 ,2 ]
Lasa-Fernandez, Haizpea [3 ]
Olmedo-Martinez, Jorge L. [1 ,2 ]
Casado, Nerea [1 ,2 ]
Alegret, Nuria [3 ,4 ]
Muller, Alejandro J. [1 ,2 ,5 ]
Sardon, Haritz [1 ,2 ]
Vallejo-Illarramendi, Ainara [4 ,6 ]
Mecerreyes, David [1 ,2 ,5 ]
机构
[1] Univ Basque Country, Fac Chem, POLYMAT, UPV EHU, Paseo Manuel de Lardizabal 3, Donostia San Sebastian 20018, Spain
[2] Univ Basque Country, Fac Chem, Dept Polymers & Adv Mat Phys Chem & Technol, UPV EHU, Paseo Manuel de Lardizabal 3, Donostia San Sebastian 20018, Spain
[3] Basque Res & Technol Alliance BRTA, Ctr Cooperat Res Biomat CIC biomaGUNE, Carbon Bionanotechnol Grp, San Sebastian 20014, Spain
[4] IIS Biodonostia, Neurosci Area, Grp Neuromuscular Dis, Paseo Dr Begiristain S-N, San Sebastian 20014, Spain
[5] Basque Fdn Sci, Ikerbasque, Bilbao 48013, Spain
[6] Univ Basque Country, Dept Pediat, Fac Med & Nursing, Grp Neurosci, Paseo Dr Begiristain 105, San Sebastian 20014, Spain
关键词
PEDOTPSS;
D O I
10.1039/d1py01185e
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The development of tailor-made polymers to build artificial three-dimensional scaffolds to repair damaged skin tissues is gaining increasing attention in the bioelectronics field. Poly(3,4-ethylene dioxythiophene) (PEDOT) is the gold standard conducting polymer for the bioelectronics field due to its high conductivity, thermal stability, and biocompatibility; however, it is insoluble and infusible, which limits its processability into three dimensional scaffolds. Here, poly(3,4-ethylendioxythiophene)-graft-poly(epsilon-caprolactone) copolymers, PEDOT-g-PCL, with different molecular weights and PEDOT compositions, were synthesized by chemical oxidative polymerization to enhance the processability of PEDOT. First, the chemical structure and composition of the copolymers were characterized by nuclear magnetic resonance, infrared spectroscopy, and thermogravimetric analysis. Then, the additive manufacturing of PEDOT-g-PCL copolymers by direct ink writing was evaluated by rheology and 3D printing assays. The morphology of the printed patterns was further characterized by scanning electron microscopy and the conductivity by the four-point probe. Finally, the employment of these printed patterns to induce muscle cells alignment was tested, proving the ability of PEDOT-g-PCL patterns to produce myotubes differentiation.
引用
收藏
页码:109 / 120
页数:12
相关论文
共 37 条
[21]   Progress in conducting polymers for biointerfacing and biorecognition applications [J].
Maziz, Ali ;
Ozgur, Erdogan ;
Bergaud, Christian ;
Uzun, Lokman .
SENSORS AND ACTUATORS REPORTS, 2021, 3
[22]   Synthesis and characterization of polypyrrole-graft-poly(ε-caprolactone) copolymers:: new electrically conductive nanocomposites [J].
Mecerreyes, D ;
Stevens, R ;
Nguyen, C ;
Pomposo, JA ;
Bengoetxea, M ;
Grande, H .
SYNTHETIC METALS, 2002, 126 (2-3) :173-178
[23]   Water Soluble Cationic Poly(3,4-Ethylenedioxythiophene) PEDOT-N as a Versatile Conducting Polymer for Bioelectronics [J].
Minudri, Daniela ;
Mantione, Daniele ;
Dominguez-Alfaro, Antonio ;
Moya, Sergio ;
Maza, Eliana ;
Bellacanzone, Christian ;
Antognazza, Maria Rosa ;
Mecerreyes, David .
ADVANCED ELECTRONIC MATERIALS, 2020, 6 (10)
[24]   The biocompatible polythiophene-g-polycaprolactone copolymer as an efficient dopamine sensor platform [J].
Molina, Brenda G. ;
Bendrea, Anca D. ;
Cianga, Luminita ;
Armelin, Elaine ;
del Valle, Luis J. ;
Cianga, Ioan ;
Aleman, Carlos .
POLYMER CHEMISTRY, 2017, 8 (39) :6112-6122
[25]   100th Anniversary of Macromolecular Science Viewpoint: Macromolecular Materials for Additive Manufacturing [J].
Narupai, Benjaporn ;
Nelson, Alshakim .
ACS MACRO LETTERS, 2020, 9 (05) :627-638
[26]   Direct identification of three crystalline phases in PEO-b-PCL-b-PLLA triblock terpolymer by In situ hot-stage atomic force microscopy [J].
Palacios, Jordana K. ;
Zhang, Heng ;
Zhang, Bin ;
Hadjichristidis, Nikos ;
Muller, Alejandro J. .
POLYMER, 2020, 205
[27]   3D-Printed, Superelastic Polypyrrole-Graphene Electrodes with Ultrahigh Areal Capacitance for Electrochemical Energy Storage [J].
Qi, Zhen ;
Ye, Jianchao ;
Chen, Wen ;
Biener, Juergen ;
Duoss, Eric B. ;
Spadaccini, Christopher M. ;
Worsley, Marcus A. ;
Zhu, Cheng .
ADVANCED MATERIALS TECHNOLOGIES, 2018, 3 (07)
[28]   An Electroactive Oligo-EDOT Platform for Neural Tissue Engineering [J].
Ritzau-Reid, Kaja, I ;
Spicer, Christopher D. ;
Gelmi, Amy ;
Grigsby, Christopher L. ;
Ponder, James F., Jr. ;
Bemmer, Victoria ;
Creamer, Adam ;
Vilar, Ramon ;
Serio, Andrea ;
Stevens, Molly M. .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (42)
[29]   Bioprinting of a Cell-Laden Conductive Hydrogel Composite [J].
Spencer, Andrew R. ;
Sani, Ehsan Shirzaei ;
Soucy, Jonathan R. ;
Corbet, Carolyn C. ;
Primbetova, Asel ;
Koppes, Ryan A. ;
Annabi, Nasim .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (34) :30518-30533
[30]   3D-Printed PCL/PPy Conductive Scaffolds as Three-Dimensional Porous Nerve Guide Conduits (NGCs) for Peripheral Nerve Injury Repair [J].
Vijayavenkataraman, Sanjairaj ;
Kannan, Sathya ;
Cao, Tong ;
Fuh, Jerry Y. H. ;
Sriram, Gopu ;
Lu, Wen Feng .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2019, 7