Electroactive 3D printable poly(3,4-ethylenedioxythiophene)-graft-poly(ε-caprolactone) copolymers as scaffolds for muscle cell alignment

被引:28
作者
Dominguez-Alfaro, Antonio [1 ,2 ,3 ]
Criado-Gonzalez, Miryam [1 ,2 ]
Gabirondo, Elena [1 ,2 ]
Lasa-Fernandez, Haizpea [3 ]
Olmedo-Martinez, Jorge L. [1 ,2 ]
Casado, Nerea [1 ,2 ]
Alegret, Nuria [3 ,4 ]
Muller, Alejandro J. [1 ,2 ,5 ]
Sardon, Haritz [1 ,2 ]
Vallejo-Illarramendi, Ainara [4 ,6 ]
Mecerreyes, David [1 ,2 ,5 ]
机构
[1] Univ Basque Country, Fac Chem, POLYMAT, UPV EHU, Paseo Manuel de Lardizabal 3, Donostia San Sebastian 20018, Spain
[2] Univ Basque Country, Fac Chem, Dept Polymers & Adv Mat Phys Chem & Technol, UPV EHU, Paseo Manuel de Lardizabal 3, Donostia San Sebastian 20018, Spain
[3] Basque Res & Technol Alliance BRTA, Ctr Cooperat Res Biomat CIC biomaGUNE, Carbon Bionanotechnol Grp, San Sebastian 20014, Spain
[4] IIS Biodonostia, Neurosci Area, Grp Neuromuscular Dis, Paseo Dr Begiristain S-N, San Sebastian 20014, Spain
[5] Basque Fdn Sci, Ikerbasque, Bilbao 48013, Spain
[6] Univ Basque Country, Dept Pediat, Fac Med & Nursing, Grp Neurosci, Paseo Dr Begiristain 105, San Sebastian 20014, Spain
关键词
PEDOTPSS;
D O I
10.1039/d1py01185e
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The development of tailor-made polymers to build artificial three-dimensional scaffolds to repair damaged skin tissues is gaining increasing attention in the bioelectronics field. Poly(3,4-ethylene dioxythiophene) (PEDOT) is the gold standard conducting polymer for the bioelectronics field due to its high conductivity, thermal stability, and biocompatibility; however, it is insoluble and infusible, which limits its processability into three dimensional scaffolds. Here, poly(3,4-ethylendioxythiophene)-graft-poly(epsilon-caprolactone) copolymers, PEDOT-g-PCL, with different molecular weights and PEDOT compositions, were synthesized by chemical oxidative polymerization to enhance the processability of PEDOT. First, the chemical structure and composition of the copolymers were characterized by nuclear magnetic resonance, infrared spectroscopy, and thermogravimetric analysis. Then, the additive manufacturing of PEDOT-g-PCL copolymers by direct ink writing was evaluated by rheology and 3D printing assays. The morphology of the printed patterns was further characterized by scanning electron microscopy and the conductivity by the four-point probe. Finally, the employment of these printed patterns to induce muscle cells alignment was tested, proving the ability of PEDOT-g-PCL patterns to produce myotubes differentiation.
引用
收藏
页码:109 / 120
页数:12
相关论文
共 37 条
[1]  
Alegret N, 2021, RSC POLYM CHEM SER, V34, P383
[2]   3D Scaffolds Based on Conductive Polymers for Biomedical Applications [J].
Alegret, Nuria ;
Dominguez-Alfaro, Antonio ;
Mecerreyes, David .
BIOMACROMOLECULES, 2019, 20 (01) :73-89
[3]   3D printing PEDOT-CMC-based high areal capacity electrodes for Li-ion batteries [J].
Bao, Pengqiang ;
Lu, Ying ;
Tao, Pan ;
Liu, Bailin ;
Li, Jinlian ;
Cui, Xiaoling .
IONICS, 2021, 27 (07) :2857-2865
[4]   Stereoretention in the Bulk ROP of L-Lactide Guided by a Thermally Stable Organocatalyst [J].
Basterretxea, Andere ;
Gabirondo, Elena ;
Jehanno, Coralie ;
Zhu, Haijin ;
Coulembier, Olivier ;
Mecerreyes, David ;
Sardon, Haritz .
MACROMOLECULES, 2021, 54 (13) :6214-6225
[5]   3,4-Ethylenedioxythiophene (EDOT) End-Group Functionalized Poly-ε-caprolactone (PCL): Self-Assembly in Organic Solvents and Its Coincidentally Observed Peculiar Behavior in Thin Film and Protonated Media [J].
Bendrea, Anca-Dana ;
Cianga, Luminita ;
Ailiesei, Gabriela-Liliana ;
Ursu, Elena-Laura ;
Goen Colak, Demet ;
Cianga, Ioan .
POLYMERS, 2021, 13 (16)
[6]   Additive Manufacturing of Conducting Polymers: Recent Advances, Challenges, and Opportunities [J].
Criado-Gonzalez, Miryam ;
Dominguez-Alfaro, Antonio ;
Lopez-Larrea, Naroa ;
Alegret, Nuria ;
Mecerreyes, David .
ACS APPLIED POLYMER MATERIALS, 2021, 3 (06) :2865-2883
[7]   Novel Conducting and Biodegradable Copolymers with Noncytotoxic Properties toward Embryonic Stem Cells [J].
da Silva, Arua C. ;
Semeano, Ana Teresa S. ;
Dourado, Andre H. B. ;
Ulrich, Henning ;
Cordoba de Torresi, Susana, I .
ACS OMEGA, 2018, 3 (05) :5593-5604
[8]   One pot biocatalytic synthesis of a biodegradable electroactive macromonomer based on 3,4-ethylenedioxytiophene and poly(L-lactic acid) [J].
da Silva, Arua C. ;
Augusto, Tatiana ;
Andrade, Leandro H. ;
Cordoba de Torresi, Susana I. .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2018, 83 :35-43
[9]   3D Printable Conducting and Biocompatible PEDOT-graft-PLA Copolymers by Direct Ink Writing [J].
Dominguez-Alfaro, Antonio ;
Gabirondo, Elena ;
Alegret, Nuria ;
Maria De Leon-Almazan, Claudia ;
Hernandez, Robert ;
Vallejo-Illarramendi, Ainara ;
Prato, Maurizio ;
Mecerreyes, David .
MACROMOLECULAR RAPID COMMUNICATIONS, 2021, 42 (12)
[10]   In vivo study of conductive 3D printed PCL/MWCNTs scaffolds with electrical stimulation for bone tissue engineering [J].
e Silva, Edney P. ;
Huang, Boyang ;
Helaehil, Julia, V ;
Nalesso, Paulo R. L. ;
Bagne, Leonardo ;
de Oliveira, Maraiara A. ;
Albiazetti, Gabriela C. C. ;
Aldalbahi, Ali ;
El-Newehy, Mohamed ;
Santamaria-Jr, Milton ;
Mendonca, Fernanda A. S. ;
Bartolo, Paulo ;
Caetano, Guilherme F. .
BIO-DESIGN AND MANUFACTURING, 2021, 4 (02) :190-202