Phase diagram of a frustrated quantum antiferromagnet on the honeycomb lattice: Magnetic order versus valence-bond crystal formation

被引:180
作者
Albuquerque, A. F. [1 ,2 ]
Schwandt, D. [1 ,2 ]
Hetenyi, B. [3 ,4 ]
Capponi, S. [1 ,2 ]
Mambrini, M. [1 ,2 ]
Laeuchli, A. M. [3 ]
机构
[1] Univ Toulouse, Phys Theor Lab, UPS IRSAMC, F-31062 Toulouse, France
[2] CNRS, LPT IRSAMC, F-31062 Toulouse, France
[3] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[4] Graz Univ Technol, Inst Theoret Phys, A-8010 Graz, Austria
关键词
HEISENBERG-ANTIFERROMAGNET; SPIN-LIQUID; EXACT DIAGONALIZATION; NEEL ORDER; MODEL; TRANSITIONS; PEIERLS; STATES;
D O I
10.1103/PhysRevB.84.024406
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a comprehensive computational study of the phase diagram of the frustrated S = 1/2 Heisenberg antiferromagnet on the honeycomb lattice, with second-nearest (J(2)) and third-neighbor (J(3)) couplings. Using a combination of exact diagonalizations (EDs) of the original spin model, of the Hamiltonian projected into the nearest-neighbor short-range valence-bond basis, and of an effective quantum dimer model, as well as a self-consistent cluster mean-field theory, we determine the boundaries of several magnetically ordered phases in the region J(2), J(3) is an element of [0,1], and find a sizable magnetically disordered region in between. We characterize part of this magnetically disordered phase as a plaquette valence-bond crystal phase. At larger J(2), we locate a sizable region in which staggered valence-bond crystal correlations are found to be important, either due to genuine valence-bond crystal (VBC) ordering or as a consequence of magnetically ordered phases, which break lattice rotational symmetry. Furthermore, we find that a particular parameter-free Gutzwiller projected tight-binding wave function has remarkably accurate energies compared to finite-size extrapolated ED energies along the transition line from conventional Neel to plaquette VBC phases, a fact that points to possibly interesting critical behavior-such as a deconfined critical point-across this transition. We also comment on the relevance of this spin model to model the spin liquid region found in the half filled Hubbard model on the honeycomb lattice.
引用
收藏
页数:22
相关论文
共 84 条
[1]   The ALPS project release 1.3:: Open-source software for strongly correlated systems [J].
Albuquerque, A. F. ;
Alet, F. ;
Corboz, P. ;
Dayal, P. ;
Feiguin, A. ;
Fuchs, S. ;
Gamper, L. ;
Gull, E. ;
Guertler, S. ;
Honecker, A. ;
Igarashi, R. ;
Koerner, M. ;
Kozhevnikov, A. ;
Laeuchli, A. ;
Manmana, S. R. ;
Matsumoto, M. ;
McCulloch, I. P. ;
Michel, F. ;
Noack, R. M. ;
Pawlowski, G. ;
Pollet, L. ;
Pruschke, T. ;
Schollwoeck, U. ;
Todo, S. ;
Trebst, S. ;
Troyer, M. ;
Werner, P. ;
Wessel, S. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (02) :1187-1193
[2]   Phase separation versus supersolid behavior in frustrated antiferromagnets [J].
Albuquerque, A. Fabricio ;
Laflorencie, Nicolas ;
Picon, Jean-David ;
Mila, Frederic .
PHYSICAL REVIEW B, 2011, 83 (17)
[3]   Generalized directed loop method for quantum Monte Carlo simulations [J].
Alet, F ;
Wessel, S ;
Troyer, M .
PHYSICAL REVIEW E, 2005, 71 (03)
[4]   RESONATING VALENCE BONDS - NEW KIND OF INSULATOR [J].
ANDERSON, PW .
MATERIALS RESEARCH BULLETIN, 1973, 8 (02) :153-160
[5]   Spin liquids in frustrated magnets [J].
Balents, Leon .
NATURE, 2010, 464 (7286) :199-208
[6]   Neel to staggered dimer order transition in a generalized honeycomb lattice Heisenberg model [J].
Banerjee, Argha ;
Damle, Kedar ;
Paramekanti, Arun .
PHYSICAL REVIEW B, 2011, 83 (13)
[7]   Some formal results for the valence bond basis [J].
Beach, K. S. D. ;
Sandvik, Anders W. .
NUCLEAR PHYSICS B, 2006, 750 (03) :142-178
[8]   SU(N) Heisenberg model on the square lattice: A continuous-N quantum Monte Carlo study [J].
Beach, K. S. D. ;
Alet, Fabien ;
Mambrini, Matthieu ;
Capponi, Sylvain .
PHYSICAL REVIEW B, 2009, 80 (18)
[9]   SIGNATURE OF NEEL ORDER IN EXACT SPECTRA OF QUANTUM ANTIFERROMAGNETS ON FINITE LATTICES [J].
BERNU, B ;
LHUILLIER, C ;
PIERRE, L .
PHYSICAL REVIEW LETTERS, 1992, 69 (17) :2590-2593
[10]   Quantum disordered phase on the frustrated honeycomb lattice [J].
Cabra, D. C. ;
Lamas, C. A. ;
Rosales, H. D. .
PHYSICAL REVIEW B, 2011, 83 (09)