Nonexistence of certain spherical designs of odd strengths and cardinalities

被引:11
作者
Boyvalenkov, P
Danev, D
Nikova, S
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, BU-1113 Sofia, Bulgaria
[2] V Turnovo Univ, Dept Math & Informat, V Turnovo 5000, Bulgaria
关键词
Minimum Distance; Spherical Design; Nonexistence Argument;
D O I
10.1007/PL00009406
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A spherical tau-design on Sn-1 is a finite set such that, for all polynomials f of degree at most tau, the average of f over the set is equal to the average of f over the sphere Sn-1. in this paper we obtain some necessary conditions for the existence of designs of odd strengths and cardinalities. This gives nonexistence results in many cases. Asymptotically, we derive a bound which is better than the corresponding estimation ensured by the Delsarte-Goethals-Seidel bound. We consider in detail the strengths tau = 3 and tau = 5 and obtain further nonexistence results in these cases. When the nonexistence argument does not work, we obtain bounds on the minimum distance of such designs.
引用
收藏
页码:143 / 156
页数:14
相关论文
共 13 条
[1]  
Abramowitz M., 1965, HDB MATH FUNCTIONS F, DOI DOI 10.1119/1.15378
[2]   Constructions of spherical 3-designs [J].
Bajnok, B .
GRAPHS AND COMBINATORICS, 1998, 14 (02) :97-107
[3]   TIGHT SPHERICAL DESIGNS .1. [J].
BANNAI, E ;
DAMERELL, RM .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1979, 31 (01) :199-207
[4]   TIGHT SPHERICAL DESIGNS, .2. [J].
BANNAI, E ;
DAMERELL, RM .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1980, 21 (FEB) :13-30
[5]   COMPUTING DISTANCE DISTRIBUTIONS OF SPHERICAL DESIGNS [J].
BOYVALENKOV, P .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 226 :277-286
[6]  
BOYVALENKOV PG, 1994, LECT NOTES COMPUT SC, V781, P207
[7]  
BOYVALENKOV PG, IN PRESS MATH BALKAN
[8]  
Conway J. H., 1993, SPHERE PACKINGS LATT
[9]  
Delsarte P., 1977, Geom. Dedicata, V6, P363, DOI DOI 10.1007/BF03187604
[10]   ON UPPER-BOUNDS FOR CODE DISTANCE AND COVERING RADIUS OF DESIGNS IN POLYNOMIAL METRIC-SPACES [J].
FAZEKAS, G ;
LEVENSHTEIN, VI .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1995, 70 (02) :267-288