Some remarks about the summability of nonlocal nonlinear problems

被引:28
作者
Barrios, Begona [1 ]
Peral, Ireneo [1 ]
Vita, Stefano [2 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, Ctra Colmenar Viejo,Km 15, E-28049 Madrid, Spain
[2] Dipartimento Matemat Giuseppe Peano, I-10123 Turin, Italy
关键词
p-fractional Laplacian; Stampacchia's method; Moser's method; Calderon-Zygmund summability result; EQUATIONS;
D O I
10.1515/anona-2015-0012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we will study the problem {(-Delta)(p)(s)u = f(x) on Omega, u = 0 in R-N \ Omega, where 0 < s < 1, (-Delta)(p)(s) is the nonlocal p-Laplacian defined below, Omega is a smooth bounded domain. The main point studied in this work is to prove, adapting the techniques used in [31] for the case p = 2 to the general case p epsilon ( 1, + infinity), the summability of the finite energy solutions in terms of the summability of a source term f(x). The aim of this note is to present the results in a way as elementary as possible.
引用
收藏
页码:91 / 107
页数:17
相关论文
共 41 条
[1]  
Ambro A., 2007, NONLINEAR ANAL SEMIL
[2]  
[Anonymous], 1970, PRINCETON MATH SER
[3]  
[Anonymous], 2009, CAMBRIDGE STUD ADV M
[4]   A critical fractional equation with concave convex power nonlinearities [J].
Barrios, B. ;
Colorado, E. ;
Servadei, R. ;
Soria, F. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (04) :875-900
[5]   Some remarks on the solvability of non-local elliptic problems with the Hardy potential [J].
Barrios, B. ;
Medina, M. ;
Peral, I. .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2014, 16 (04)
[6]  
Bertoin J., 1996, Cambridge Tracts in Mathematics, V121
[7]   Non-local gradient dependent operators [J].
Bjorland, C. ;
Caffarelli, L. ;
Figalli, A. .
ADVANCES IN MATHEMATICS, 2012, 230 (4-6) :1859-1894
[8]   Harnack's inequality for stable Levy processes [J].
Bogdan, K ;
Sztonyk, P .
POTENTIAL ANALYSIS, 2005, 22 (02) :133-150
[9]   CONVEXITY PROPERTIES OF DIRICHLET INTEGRALS AND PICONE-TYPE INEQUALITIES [J].
Brasco, Lorenzo ;
Franzina, Giovanni .
KODAI MATHEMATICAL JOURNAL, 2014, 37 (03) :769-799
[10]   REMARKS ON SUBLINEAR ELLIPTIC-EQUATIONS [J].
BREZIS, H ;
OSWALD, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (01) :55-64