On the Lower Bound of the Derived Length of the Unit Group of a Nontorsion Group Algebra

被引:2
|
作者
Juhasz, Tibor [1 ]
Lee, Gregory T. [2 ]
Sehgal, Sudarshan K. [3 ]
Spinelli, Ernesto [4 ]
机构
[1] Eszterhazy Karoly Univ, Inst Math & Informat, Leanyka U 4, H-3300 Eger, Hungary
[2] Lakehead Univ, Dept Math Sci, Thunder Bay, ON P7B 5E1, Canada
[3] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[4] Univ Roma La Sapienza, Dipartimento Matemat G Castelnuovo, Ple Aldo Moro 5, I-00185 Rome, Italy
关键词
Group ring; Unit group; Derived length;
D O I
10.1007/s10468-019-09855-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a nonabelian nilpotent group and F a field of characteristic p > 2, such that the unit group U(FG) of the group ring FG is solvable and G contains a p-element. Here we provide a lower bound for the derived length of U(FG) that corrects the result from Lee et al. (Algebr. Represent. Theory 17, 1597-1601 2014) when G is nontorsion and G' is a finite p-group.
引用
收藏
页码:457 / 466
页数:10
相关论文
共 50 条