Dynamic Texture Segmentation using Spectral Clustering Based on CHMMs

被引:0
作者
Qiao, Yulong [1 ]
Liu, Qiufei [1 ]
Wu, Kejun [2 ]
Sheng, Jinhui [1 ]
Liu, Qiuxia [3 ]
Li, Na [1 ]
机构
[1] Harbin Engn Univ, Coll Informat & Commun Engn, Harbin, Heilongjiang, Peoples R China
[2] Harbin Engn Univ, Coll Automat, Harbin, Heilongjiang, Peoples R China
[3] Zhoukou Normal Univ, Coll Foreign Languages, Zhoukou, Peoples R China
来源
TENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2018) | 2018年 / 10806卷
基金
中国国家自然科学基金;
关键词
Continuous Hidden Markov Model; dynamic texture segmentation; spectral clustering; Kullback-Leibler divergence; RECOGNITION;
D O I
10.1117/12.2503326
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we introduce the spectral clustering method based on Continuous Hidden Markov Model (CHMM) into dynamic texture (DT) segmentation. In order to characterize the DT, CHMMs are used to model all spatial subblocks of the DT. The initial segmentation is realized by utilizing the spectral clustering based on CHMMs. The similarity between two different CHMMs is measured with approximated Kullback-Leibler divergence (KLD). To improve the DT segmentation performance, the mathematical morphology method is also applied into further processing which is operated on the pixel level. Experimental results on artificially synthesized DT samples of DynTex dataset demonstrate the effectiveness of the proposed method.
引用
收藏
页数:6
相关论文
共 16 条
  • [1] Bicego M, 2004, PATTERN RECOGN, V37, P2281, DOI [10.1016/S0031-3203(04)00162-1, 10.1016/j.patcog.2004.04.005]
  • [2] Bingxiang Liu, 2011, 2011 Proceedings of IEEE International Conference on Computer Science and Automation Engineering (CSAE), P550, DOI 10.1109/CSAE.2011.5953280
  • [3] Bombrun L, 2012, IEEE IMAGE PROC, P2413, DOI 10.1109/ICIP.2012.6467384
  • [4] Layered Dynamic Textures
    Chan, Antoni B.
    Vasconcelos, Nuno
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, 31 (10) : 1862 - 1879
  • [5] Dynamic textures
    Doretto, G
    Chiuso, A
    Wu, YN
    Soatto, S
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2003, 51 (02) : 91 - 109
  • [6] Rotation and scale invariant texture classification by compensating for distribution changes using covariate shift in uniform local binary patterns
    Hassan, A.
    Riaz, F.
    Rehman, S.
    [J]. ELECTRONICS LETTERS, 2014, 50 (01) : 27 - 28
  • [7] Recognition of human actions using texture descriptors
    Kellokumpu, Vili
    Zhao, Guoying
    Pietikainen, Matti
    [J]. MACHINE VISION AND APPLICATIONS, 2011, 22 (05) : 767 - 780
  • [8] Péteri R, 2005, LECT NOTES COMPUT SC, V3523, P223
  • [9] DynTex: A comprehensive database of dynamic textures
    Peteri, Renaud
    Fazekas, Sandor
    Huiskes, Mark J.
    [J]. PATTERN RECOGNITION LETTERS, 2010, 31 (12) : 1627 - 1632
  • [10] Qiao Y.L., 2013, MATH PROBL ENG, V2013, P583