Forecast of solar energy resource by using neural network methods

被引:0
作者
Fiorin, Daniel V. [1 ]
Martins, Fernando R. [2 ]
Schuch, Nelson J. [1 ]
Pereira, Enio B. [2 ]
机构
[1] Inst Nacl Pesquisas Espaciais, Ctr Reg Sul Pesquisas Espaciais, Santa Maria, RS, Brazil
[2] Inst Nacl Pesquisas Espaciais, Ctr Ciencia Sistema Terrestre, Sao Jose Dos Campos, SP, Brazil
来源
REVISTA BRASILEIRA DE ENSINO DE FISICA | 2011年 / 33卷 / 01期
关键词
solar energy; artificial neural networks; atmospheric modeling; numeric mesoscale models; RADIATION; MODEL; MM5;
D O I
暂无
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
This work aims at discussing the artificial neural networks (ANN) and some applications in renewable energy assessment. First, the paper describes the statistical relevance of this tool in different areas of knowledge and the main ANN concepts and configurations. Finally, the paper presents and discusses the use of ANN for the solar energy assessment in Brazil by using data collected in SONDA sites operated by the Center for Earth System Science of the Brazilian Institute for Space Research. The results show that ANN can provide reliable estimates with better performance than other statistical tools.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Using an Artificial Neural Network to Forecast the Market Share of Thai Rice
    Apichottanakul, A.
    Piewthongngam, K.
    Pathumnakul, S.
    2009 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT, VOLS 1-4, 2009, : 665 - 668
  • [32] Determination of Power Losses in Solar Panels Using Artificial Neural Network
    Jazayeri, Kian
    Uysal, Sener
    Jazayeri, Moein
    AFRICON, 2013, 2013, : 29 - 34
  • [33] Fog Forecast Using WRF Model Output for Solar Energy Applications
    Nilo, Saverio Teodosio
    Cimini, Domenico
    Di Paola, Francesco
    Gallucci, Donatello
    Gentile, Sabrina
    Geraldi, Edoardo
    Larosa, Salvatore
    Ricciardelli, Elisabetta
    Ripepi, Ermann
    Viggiano, Mariassunta
    Romano, Filomena
    ENERGIES, 2020, 13 (22)
  • [34] Forecast Combination by Using Artificial Neural Networks
    Aladag, Cagdas Hakan
    Egrioglu, Erol
    Yolcu, Ufuk
    NEURAL PROCESSING LETTERS, 2010, 32 (03) : 269 - 276
  • [35] Combining solar resource mapping and energy system integration methods for realistic valuation of urban solar energy potential
    Wegertseder, Paulina
    Lund, Peter
    Mikkola, Jani
    Garcia Alvarado, Rodrigo
    SOLAR ENERGY, 2016, 135 : 325 - 336
  • [36] Short Term Solar Power and Temperature Forecast Using Recurrent Neural Networks
    Gundu, Venkateswarlu
    Simon, Sishaj P.
    NEURAL PROCESSING LETTERS, 2021, 53 (06) : 4407 - 4418
  • [37] A Solar Energy Forecast Model Using Neural Networks: Application for Prediction of Power for Wireless Sensor Networks in Precision Agriculture
    Sukham Dhillon
    Charu Madhu
    Daljeet Kaur
    Sarvjit Singh
    Wireless Personal Communications, 2020, 112 : 2741 - 2760
  • [38] Short-Term Spanish Aggregated Solar Energy Forecast
    Perez-Mora, Nicolas
    Canals, Vincent
    Martinez-Moll, Victor
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, PT II, 2015, 9095 : 307 - 319
  • [39] Mapping of solar energy potential in Indonesia using artificial neural network and geographical information system
    Rumbayan, Meita
    Abudureyimu, Asifujiang
    Nagasaka, Ken
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2012, 16 (03) : 1437 - 1449
  • [40] Assessment of diffuse solar energy under general sky condition using artificial neural network
    Alam, Shah
    Kaushik, S. C.
    Garg, S. N.
    APPLIED ENERGY, 2009, 86 (04) : 554 - 564