Forecast of solar energy resource by using neural network methods

被引:0
作者
Fiorin, Daniel V. [1 ]
Martins, Fernando R. [2 ]
Schuch, Nelson J. [1 ]
Pereira, Enio B. [2 ]
机构
[1] Inst Nacl Pesquisas Espaciais, Ctr Reg Sul Pesquisas Espaciais, Santa Maria, RS, Brazil
[2] Inst Nacl Pesquisas Espaciais, Ctr Ciencia Sistema Terrestre, Sao Jose Dos Campos, SP, Brazil
来源
REVISTA BRASILEIRA DE ENSINO DE FISICA | 2011年 / 33卷 / 01期
关键词
solar energy; artificial neural networks; atmospheric modeling; numeric mesoscale models; RADIATION; MODEL; MM5;
D O I
暂无
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
This work aims at discussing the artificial neural networks (ANN) and some applications in renewable energy assessment. First, the paper describes the statistical relevance of this tool in different areas of knowledge and the main ANN concepts and configurations. Finally, the paper presents and discusses the use of ANN for the solar energy assessment in Brazil by using data collected in SONDA sites operated by the Center for Earth System Science of the Brazilian Institute for Space Research. The results show that ANN can provide reliable estimates with better performance than other statistical tools.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] RESEARCH ON GLOBAL SOLAR RADIATION FORECAST BASED ON DEEP FUZZY NEURAL NETWORK
    Qiao N.
    Jiang B.
    Zheng Y.
    Liu Y.
    Wang J.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2024, 45 (02): : 59 - 64
  • [22] Context Classification in Energy Resource Management of Residential Buildings using Artificial Neural Network
    Madureira, Bruno
    Pinto, Tiago
    Fernandes, Filipe
    Vale, Zita
    Ramos, Carlos
    PROCEEDINGS OF THE 2017 INTELLIGENT SYSTEMS CONFERENCE (INTELLISYS), 2017, : 225 - 233
  • [23] Solar Energy Prediction for Malaysia Using Artificial Neural Networks
    Khatib, Tamer
    Mohamed, Azah
    Sopian, K.
    Mahmoud, M.
    INTERNATIONAL JOURNAL OF PHOTOENERGY, 2012, 2012
  • [24] Artificial Neural Network Prediction to Identify Solar Energy Potential In Eastern Indonesia
    Aryani, Dharma
    Pranoto, Sarwo
    Fajar
    Intang, A. Nur
    Rhamadhan, Firza Zulmi
    2023 IEEE 3RD INTERNATIONAL CONFERENCE IN POWER ENGINEERING APPLICATIONS, ICPEA, 2023, : 252 - 256
  • [25] An Artificial Neural Network for Solar Energy Prediction and Control Using Jaya-SMC
    Jlidi, Mokhtar
    Hamidi, Faical
    Barambones, Oscar
    Abbassi, Rabeh
    Jerbi, Houssem
    Aoun, Mohamed
    Karami-Mollaee, Ali
    ELECTRONICS, 2023, 12 (03)
  • [26] Solar irradiance forecast using aerosols measurements: A data driven approach
    Alfadda, Abdullah
    Rahman, Saifur
    Pipattanasomporn, Manisa
    SOLAR ENERGY, 2018, 170 : 924 - 939
  • [27] Solar radiation prediction using Artificial Neural Network techniques: A review
    Yadav, Amit Kumar
    Chandel, S. S.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 33 : 772 - 781
  • [28] Rapid evaluation of micro-scale photovoltaic solar energy systems using empirical methods combined with deep learning neural networks to support systems' manufacturers
    Almeshaiei, Eisa
    Al-Habaibeh, Amin
    Shakmak, Bubaker
    JOURNAL OF CLEANER PRODUCTION, 2020, 244
  • [29] Neural network for tsunami and runup forecast
    Namekar, Shailesh
    Yamazaki, Yoshiki
    Cheung, Kwok Fai
    GEOPHYSICAL RESEARCH LETTERS, 2009, 36
  • [30] A Solar Energy Forecast Model Using Neural Networks: Application for Prediction of Power for Wireless Sensor Networks in Precision Agriculture
    Dhillon, Sukham
    Madhu, Charu
    Kaur, Daljeet
    Singh, Sarvjit
    WIRELESS PERSONAL COMMUNICATIONS, 2020, 112 (04) : 2741 - 2760