Forecast of solar energy resource by using neural network methods

被引:0
作者
Fiorin, Daniel V. [1 ]
Martins, Fernando R. [2 ]
Schuch, Nelson J. [1 ]
Pereira, Enio B. [2 ]
机构
[1] Inst Nacl Pesquisas Espaciais, Ctr Reg Sul Pesquisas Espaciais, Santa Maria, RS, Brazil
[2] Inst Nacl Pesquisas Espaciais, Ctr Ciencia Sistema Terrestre, Sao Jose Dos Campos, SP, Brazil
来源
REVISTA BRASILEIRA DE ENSINO DE FISICA | 2011年 / 33卷 / 01期
关键词
solar energy; artificial neural networks; atmospheric modeling; numeric mesoscale models; RADIATION; MODEL; MM5;
D O I
暂无
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
This work aims at discussing the artificial neural networks (ANN) and some applications in renewable energy assessment. First, the paper describes the statistical relevance of this tool in different areas of knowledge and the main ANN concepts and configurations. Finally, the paper presents and discusses the use of ANN for the solar energy assessment in Brazil by using data collected in SONDA sites operated by the Center for Earth System Science of the Brazilian Institute for Space Research. The results show that ANN can provide reliable estimates with better performance than other statistical tools.
引用
收藏
页数:20
相关论文
共 50 条
  • [11] Volatility forecast using hybrid Neural Network models
    Kristjanpoller, Werner
    Fadic, Anton
    Minutolo, Marcel C.
    EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (05) : 2437 - 2442
  • [12] Using Chaotic Neural Network to Forecast Stock Index
    Ning, Bo
    Wu, Jiutao
    Peng, Hui
    Zhao, Jianye
    ADVANCES IN NEURAL NETWORKS - ISNN 2009, PT 1, PROCEEDINGS, 2009, 5551 : 870 - +
  • [13] Methods of improvement of energy consumption forecasting using an artificial neural network
    Piotrowski, Pawel
    PRZEGLAD ELEKTROTECHNICZNY, 2007, 83 (06): : 75 - 77
  • [14] FORECAST OF SOLAR PROTON EVENTS WITH NOAA SCALES BASED ON SOLAR X-RAY FLARE DATA USING NEURAL NETWORK
    Jeong, Eui-Jun
    Lee, Jin-Yi
    Moon, Yong-Jae
    Park, Jongyeop
    JOURNAL OF THE KOREAN ASTRONOMICAL SOCIETY, 2014, 47 (06) : 209 - 214
  • [15] Modeling Solar Energy Potential in a Tehran Province Using Artificial Neural Networks
    Ramedani, Zeynab
    Omid, Mahmoud
    Keyhani, Alireza
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2013, 10 (04) : 427 - 441
  • [16] Modeling of Solar Energy Potential in Libya using an Artificial Neural Network Model
    Kutucu, Hakan
    Almryad, Ayad
    PROCEEDINGS OF THE 2016 IEEE FIRST INTERNATIONAL CONFERENCE ON DATA STREAM MINING & PROCESSING (DSMP), 2016, : 356 - 359
  • [17] Mapping of solar energy potential in Fiji using an artificial neural network approach
    Oyewola, Olanrewaju M.
    Ismail, Olawale S.
    Olasinde, Malik O.
    Ajide, Olusegun O.
    HELIYON, 2022, 8 (07)
  • [18] Generalized Neural Network Approach for Global Solar Energy Estimation in India
    Rizwan, M.
    Jamil, Majid
    Kothari, D. P.
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2012, 3 (03) : 576 - 584
  • [19] Artificial Neural Network Modelling for Performance Prediction of Solar Energy System
    Yaici, Wahiba
    Entchev, Evgueniy
    Longo, Michela
    Brenna, Morris
    Foiadelli, Federica
    2015 INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS (ICRERA), 2015, : 1147 - 1151
  • [20] An ensemble of artificial neural network models to forecast hourly energy demand
    Manno, Andrea
    Intini, Manuel
    Jabali, Ola
    Malucelli, Federico
    Rando, Dario
    OPTIMIZATION AND ENGINEERING, 2024, 25 (04) : 2315 - 2343