Forecast of solar energy resource by using neural network methods

被引:0
|
作者
Fiorin, Daniel V. [1 ]
Martins, Fernando R. [2 ]
Schuch, Nelson J. [1 ]
Pereira, Enio B. [2 ]
机构
[1] Inst Nacl Pesquisas Espaciais, Ctr Reg Sul Pesquisas Espaciais, Santa Maria, RS, Brazil
[2] Inst Nacl Pesquisas Espaciais, Ctr Ciencia Sistema Terrestre, Sao Jose Dos Campos, SP, Brazil
来源
REVISTA BRASILEIRA DE ENSINO DE FISICA | 2011年 / 33卷 / 01期
关键词
solar energy; artificial neural networks; atmospheric modeling; numeric mesoscale models; RADIATION; MODEL; MM5;
D O I
暂无
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
This work aims at discussing the artificial neural networks (ANN) and some applications in renewable energy assessment. First, the paper describes the statistical relevance of this tool in different areas of knowledge and the main ANN concepts and configurations. Finally, the paper presents and discusses the use of ANN for the solar energy assessment in Brazil by using data collected in SONDA sites operated by the Center for Earth System Science of the Brazilian Institute for Space Research. The results show that ANN can provide reliable estimates with better performance than other statistical tools.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Dynamic Behavior Forecast of an Experimental Indirect Solar Dryer Using an Artificial Neural Network
    Becerro, Angel Tlatelpa
    Martinez, Ramiro Rico
    Lopez-Vidana, Erick Cesar
    Palacios, Esteban Montiel
    Segundo, Cesar Torres
    Pacheco, Jose Luis Gadea
    AGRIENGINEERING, 2023, 5 (04): : 2423 - 2438
  • [2] Enhancing Solar Energy Forecast Using Multi-Column Convolutional Neural Network and Multipoint Time Series Approach
    Kumar, Anil
    Kashyap, Yashwant
    Kosmopoulos, Panagiotis
    REMOTE SENSING, 2023, 15 (01)
  • [3] Implementation of solar energy in smart cities using an integration of artificial neural network, photovoltaic system and classical Delphi methods
    Ghadami, Nasim
    Gheibi, Mohammad
    Kian, Zahra
    Faramarz, Mahdieh G.
    Naghedi, Reza
    Eftekhari, Mohammad
    Fathollahi-Fard, Amir M.
    Dulebenets, Maxim A.
    Tian, Guangdong
    SUSTAINABLE CITIES AND SOCIETY, 2021, 74
  • [4] Modeling of solar energy systems using artificial neural network: A comprehensive review
    Elsheikh, Ammar H.
    Sharshir, Swellam W.
    Abd Elaziz, Mohamed
    Kabeel, A. E.
    Wang Guilan
    Zhang Haiou
    SOLAR ENERGY, 2019, 180 : 622 - 639
  • [5] Neural Networks Forecast Models Comparison for the Solar Energy Generation in Amazon Basin
    Marques, Andre Luis Ferreira
    Teixeira, Marcio Jose
    de Almeida, Felipe Valencia
    Correa, Pedro Luiz Pizzigatti
    IEEE ACCESS, 2024, 12 : 17915 - 17925
  • [6] Long-Term Solar Irradiance Forecast Using Artificial Neural Network: Application for Performance Prediction of Indian Cities
    Malik, Hasmat
    Garg, Siddharth
    APPLICATIONS OF ARTIFICIAL INTELLIGENCE TECHNIQUES IN ENGINEERING, VOL 2, 2019, 697 : 285 - 293
  • [7] Evaluation of artificial neural network methods to forecast short-term solar power generation: a case study in Eastern Mediterranean Region
    Bozkurt, Helin
    Macit, Ramazan
    Celik, Ozgur
    Teke, Ahmet
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2022, 30 (06) : 2013 - 2030
  • [8] Using Machine Learning Algorithms to Forecast Solar Energy Power Output
    Lari, Ali Jassim
    Sanfilippo, Antonio P.
    Bachour, Dunia
    Perez-Astudillo, Daniel
    ELECTRONICS, 2025, 14 (05):
  • [9] A Shallow Neural Network Approach for the Short-Term Forecast of Hourly Energy Consumption
    Manno, Andrea
    Martelli, Emanuele
    Amaldi, Edoardo
    ENERGIES, 2022, 15 (03)
  • [10] Application of the Deep Convolutional Neural Network to the Forecast of Solar Flare Occurrence Using Full-disk Solar Magnetograms
    Park, Eunsu
    Moon, Yong-Jae
    Shin, Seulki
    Yi, Kangwoo
    Lim, Daye
    Lee, Harim
    Shin, Gyungin
    ASTROPHYSICAL JOURNAL, 2018, 869 (02)