Spatial Bayesian hierarchical modeling of precipitation extremes over a large domain

被引:37
作者
Bracken, C. [1 ,2 ]
Rajagopalan, B. [1 ,3 ]
Cheng, L. [3 ,4 ]
Kleiber, W. [5 ]
Gangopadhyay, S. [2 ]
机构
[1] Univ Colorado, Dept Civil Environm & Architectural Engn, Boulder, CO 80309 USA
[2] US Bur Reclamat, Tech Serv Ctr, Denver, CO 80225 USA
[3] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[4] NOAA, Earth Syst Res Lab, Boulder, CO USA
[5] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
spatial extremes; composite likelihood; Gaussian copula; Bayesian; large domain; precipitation extremes; LIKELIHOOD; INFERENCE; DEPENDENCE;
D O I
10.1002/2016WR018768
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We propose a Bayesian hierarchical model for spatial extremes on a large domain. In the data layer a Gaussian elliptical copula having generalized extreme value (GEV) marginals is applied. Spatial dependence in the GEV parameters is captured with a latent spatial regression with spatially varying coefficients. Using a composite likelihood approach, we are able to efficiently incorporate a large precipitation data set, which includes stations with missing data. The model is demonstrated by application to fall precipitation extremes at approximately 2600 stations covering the western United States, -125 degrees E to -100 degrees E longitude and 30 degrees N-50 degrees N latitude. The hierarchical model provides GEV parameters on a 1/8 degrees grid and, consequently, maps of return levels and associated uncertainty. The model results indicate that return levels and their associated uncertainty have a well-defined spatial structure. Maps of return levels provide information about the spatial variations of the risk of extreme precipitation in the western US and is expected to be useful for infrastructure planning.
引用
收藏
页码:6643 / 6655
页数:13
相关论文
共 49 条
  • [1] [Anonymous], EXTREME VALUE MODELI
  • [2] [Anonymous], CASE STUDIES ENV STA
  • [3] [Anonymous], 1988, Statistical Inference from Stochastic Processes
  • [4] [Anonymous], 2007, STATISCAL ANAL EXTRE
  • [5] [Anonymous], STAN C LIBR PROB SAM
  • [6] [Anonymous], 2004, PRECIPITATION FREQUE
  • [7] Spatiotemporal hierarchical modelling of extreme precipitation in Western Australia using anisotropic Gaussian random fields
    Apputhurai, Pragalathan
    Stephenson, Alec G.
    [J]. ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2013, 20 (04) : 667 - 677
  • [8] Characterizing and Modeling Temporal and Spatial Trends in Rainfall Extremes
    Aryal, Santosh K.
    Bates, Bryson C.
    Campbell, Edward P.
    Li, Yun
    Palmer, Mark J.
    Viney, Neil R.
    [J]. JOURNAL OF HYDROMETEOROLOGY, 2009, 10 (01) : 241 - 253
  • [9] A region-based hierarchical model for extreme rainfall over the UK, incorporating spatial dependence and temporal trend
    Atyeo, Jonathan
    Walshaw, David
    [J]. ENVIRONMETRICS, 2012, 23 (06) : 509 - 521
  • [10] Stationary process approximation for the analysis of large spatial datasets
    Banerjee, Sudipto
    Gelfand, Alan E.
    Finley, Andrew O.
    Sang, Huiyan
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2008, 70 : 825 - 848