Genome-wide identification and predictive modeling of polyadenylation sites in eukaryotes

被引:27
作者
Ji, Guoli [1 ,2 ]
Guan, Jinting [1 ]
Zeng, Yong [1 ]
Li, Qingshun Q. [3 ,4 ,5 ]
Wu, Xiaohui [1 ]
机构
[1] Xiamen Univ, Dept Automat, Xiamen 361005, Fujian, Peoples R China
[2] Xiamen Univ, Innovat Ctr Cell Biol, Xiamen 361005, Fujian, Peoples R China
[3] Xiamen Univ, Coll Environm & Ecol, Minist Educ Coastal & Wetland Ecosyst, Key Lab, Xiamen 361005, Fujian, Peoples R China
[4] Miami Univ, Dept Biol, Oxford, OH 45056 USA
[5] Fujian Acad Agr Sci, Rice Res Inst, Fuzhou, Fujian, Peoples R China
基金
高等学校博士学科点专项科研基金; 美国国家科学基金会; 中国国家自然科学基金;
关键词
poly(A) site; poly(A) signal; alternative polyadenylation; high-throughput technology; predictive modeling; MESSENGER-RNA POLYADENYLATION; ALTERNATIVE POLYADENYLATION; SECONDARY STRUCTURE; POLY(A) SITES; SIGNALS; CLEAVAGE; LANDSCAPE; RECOGNITION; PATTERNS; FEATURES;
D O I
10.1093/bib/bbu011
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Polyadenylation [poly(A)] is a vital step in post-transcriptional processing of pre-mRNA. Alternative polyadenylation is a widespread mechanism of regulating gene expression in eukaryotes. Defining poly(A) sites contributes to the annotation of transcripts' ends and the study of gene regulatory mechanisms. Here, we survey methods for collecting poly(A) sites using high-throughput sequencing technologies and summarize the general processes for genome-wide poly(A) site identifications. We also compare the performances of various poly(A) site prediction models and discuss the relationship between poly(A) site identification from sequencing projects and predictive modeling. Moreover, we attempt to address some potential problems in current researches and propose future directions related to polyadenylation research.
引用
收藏
页码:304 / 313
页数:10
相关论文
共 54 条
  • [11] A probabilistic model of 3′ end formation in Caenorhabditis elegans
    Hajarnavis, A
    Korf, I
    Durbin, R
    [J]. NUCLEIC ACIDS RESEARCH, 2004, 32 (11) : 3392 - 3399
  • [12] A multispecies polyadenylation site model
    Ho, Eric S.
    Gunderson, Samuel I.
    Duffy, Siobain
    [J]. BMC BIOINFORMATICS, 2013, 14
  • [13] Hoque M, 2013, NAT METHODS, V10, P133, DOI [10.1038/NMETH.2288, 10.1038/nmeth.2288]
  • [14] Formation, regulation and evolution of Caenorhabditis elegans 3′UTRs
    Jan, Calvin H.
    Friedman, Robin C.
    Ruby, J. Graham
    Bartel, David P.
    [J]. NATURE, 2011, 469 (7328) : 97 - U114
  • [15] Predictive modeling of plant messenger RNA polyadenylation sites
    Ji, Guoli
    Zheng, Jianti
    Shen, Yingjia
    Wu, Xiaohui
    Jiang, Ronghan
    Lin, Yun
    Loke, Johnny C.
    Davis, Kimberly M.
    Reese, Greg J.
    Li, Qingshun Quinn
    [J]. BMC BIOINFORMATICS, 2007, 8 (1)
  • [16] A classification-based prediction model of messenger RNA polyadenylation sites
    Ji, Guoli
    Wu, Xiaohui
    Shen, Yingjia
    Huang, Jiangyin
    Li, Qingshun Quinn
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2010, 265 (03) : 287 - 296
  • [17] Transcriptional activity regulates alternative cleavage and polyadenylation
    Ji, Zhe
    Luo, Wenting
    Li, Wencheng
    Hoque, Mainul
    Pan, Zhenhua
    Zhao, Yun
    Tian, Bin
    [J]. MOLECULAR SYSTEMS BIOLOGY, 2011, 7
  • [18] Dragon PolyA Spotter: predictor of poly(A) motifs within human genomic DNA sequences
    Kalkatawi, Manal
    Rangkuti, Farania
    Schramm, Michael
    Jankovic, Boris R.
    Kamau, Allan
    Chowdhary, Rajesh
    Archer, John A. C.
    Bajic, Vladimir B.
    [J]. BIOINFORMATICS, 2012, 28 (01) : 127 - 129
  • [19] Genome-wide measurement of RNA secondary structure in yeast
    Kertesz, Michael
    Wan, Yue
    Mazor, Elad
    Rinn, John L.
    Nutter, Robert C.
    Chang, Howard Y.
    Segal, Eran
    [J]. NATURE, 2010, 467 (7311) : 103 - 107
  • [20] KONDRAKHIN YV, 1994, COMPUT APPL BIOSCI, V10, P597