Genome-wide identification and predictive modeling of polyadenylation sites in eukaryotes

被引:29
作者
Ji, Guoli [1 ,2 ]
Guan, Jinting [1 ]
Zeng, Yong [1 ]
Li, Qingshun Q. [3 ,4 ,5 ]
Wu, Xiaohui [1 ]
机构
[1] Xiamen Univ, Dept Automat, Xiamen 361005, Fujian, Peoples R China
[2] Xiamen Univ, Innovat Ctr Cell Biol, Xiamen 361005, Fujian, Peoples R China
[3] Xiamen Univ, Coll Environm & Ecol, Minist Educ Coastal & Wetland Ecosyst, Key Lab, Xiamen 361005, Fujian, Peoples R China
[4] Miami Univ, Dept Biol, Oxford, OH 45056 USA
[5] Fujian Acad Agr Sci, Rice Res Inst, Fuzhou, Fujian, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
poly(A) site; poly(A) signal; alternative polyadenylation; high-throughput technology; predictive modeling; MESSENGER-RNA POLYADENYLATION; ALTERNATIVE POLYADENYLATION; SECONDARY STRUCTURE; POLY(A) SITES; SIGNALS; CLEAVAGE; LANDSCAPE; RECOGNITION; PATTERNS; FEATURES;
D O I
10.1093/bib/bbu011
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Polyadenylation [poly(A)] is a vital step in post-transcriptional processing of pre-mRNA. Alternative polyadenylation is a widespread mechanism of regulating gene expression in eukaryotes. Defining poly(A) sites contributes to the annotation of transcripts' ends and the study of gene regulatory mechanisms. Here, we survey methods for collecting poly(A) sites using high-throughput sequencing technologies and summarize the general processes for genome-wide poly(A) site identifications. We also compare the performances of various poly(A) site prediction models and discuss the relationship between poly(A) site identification from sequencing projects and predictive modeling. Moreover, we attempt to address some potential problems in current researches and propose future directions related to polyadenylation research.
引用
收藏
页码:304 / 313
页数:10
相关论文
共 54 条
[1]  
Ahmed Firoz, 2009, In Silico Biology, V9, P135, DOI 10.3233/ISB-2009-0395
[2]   POLYAR, a new computer program for prediction of poly(A) sites in human sequences [J].
Akhtar, Malik Nadeem ;
Bukhari, Syed Abbas ;
Fazal, Zeeshan ;
Qamar, Raheel ;
Shahmuradov, Ilham A. .
BMC GENOMICS, 2010, 11
[3]   Characterization and prediction of mRNA polyadenylation sites in human genes [J].
Chang, Tzu-Hao ;
Wu, Li-Ching ;
Chen, Yu-Ting ;
Huang, Hsien-Da ;
Liu, Baw-Jhiune ;
Cheng, Kuang-Fu ;
Horng, Jorng-Tzong .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2011, 49 (04) :463-472
[4]   Prediction of mRNA polyadenylation sites by support vector machine [J].
Cheng, Yiming ;
Miura, Robert M. ;
Tian, Bin .
BIOINFORMATICS, 2006, 22 (19) :2320-2325
[5]   A quantitative atlas of polyadenylation in five mammals [J].
Derti, Adnan ;
Garrett-Engele, Philip ;
MacIsaac, Kenzie D. ;
Stevens, Richard C. ;
Sriram, Shreedharan ;
Chen, Ronghua ;
Rohl, Carol A. ;
Johnson, Jason M. ;
Babak, Tomas .
GENOME RESEARCH, 2012, 22 (06) :1173-1183
[6]   In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features [J].
Ding, Yiliang ;
Tang, Yin ;
Kwok, Chun Kit ;
Zhang, Yu ;
Bevilacqua, Philip C. ;
Assmann, Sarah M. .
NATURE, 2014, 505 (7485) :696-+
[7]   Differential genome-wide profiling of tandem 3′ UTRs among human breast cancer and normal cells by high-throughput sequencing [J].
Fu, Yonggui ;
Sun, Yu ;
Li, Yuxin ;
Li, Jie ;
Rao, Xingqiang ;
Chen, Chong ;
Xu, Anlong .
GENOME RESEARCH, 2011, 21 (05) :741-747
[8]   Probabilistic prediction of Saccharomyces cerevisiae mRNA 3′-processing sites [J].
Graber, JH ;
McAllister, GD ;
Smith, TF .
NUCLEIC ACIDS RESEARCH, 2002, 30 (08) :1851-1858
[9]   Genomic detection of new yeast pre-mRNA 3′-end-processing signals [J].
Graber, JH ;
Cantor, CR ;
Mohr, SC ;
Smith, TF .
NUCLEIC ACIDS RESEARCH, 1999, 27 (03) :888-894
[10]   Genome-wide identification and predictive modeling of tissue-specific alternative polyadenylation [J].
Hafez, Dina ;
Ni, Ting ;
Mukherjee, Sayan ;
Zhu, Jun ;
Ohler, Uwe .
BIOINFORMATICS, 2013, 29 (13) :108-116