Genetic algorithm search for large logistic regression models with significant variables

被引:0
|
作者
Stacey, A [1 ]
Kildea, D [1 ]
机构
[1] Royal Melbourne Inst Technol, Dept Math, Melbourne, Vic 3000, Australia
来源
ITI 2000: PROCEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY INTERFACES | 2000年
关键词
logistic regression; genetic algorithms; computational statistics;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A Genetic Algorithm (GA) is described which searches the space of all possible subsets of predictor variables for the best Logistic Regression model containing only significant variables. The method has been shown to be effective on a data set with eighteen variables and on a larger data set of two hundred variables. For the smaller data set an exhaustive search I revealed only seven valid models, of which the GA found five. The method has been applied to Linear Regression with equal success. As GA's never guarantee to find an optimal solution the method is best described as an exploratory tool.
引用
收藏
页码:275 / 279
页数:5
相关论文
共 50 条
  • [21] A Comparison of Classification/Regression Trees and Logistic Regression in Failure Models
    Irimia-Dieguez, A. I.
    Blanco-Oliver, A.
    Vazquez-Cueto, M. J.
    2ND GLOBAL CONFERENCE ON BUSINESS, ECONOMICS, MANAGEMENT AND TOURISM, 2015, 23 : 9 - 14
  • [22] A fast dual algorithm for kernel logistic regression
    Keerthi, SS
    Duan, KB
    Shevade, SK
    Poo, AN
    MACHINE LEARNING, 2005, 61 (1-3) : 151 - 165
  • [23] classLog: Logistic regression for the classification of genetic sequences
    Zeller, Michael A.
    Arendsee, Zebulun W.
    Smith, Gavin J. D.
    Anderson, Tavis K.
    FRONTIERS IN VIROLOGY, 2023, 3
  • [24] Large-Scale Sparse Logistic Regression
    Liu, Jun
    Chen, Jianhui
    Ye, Jieping
    KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2009, : 547 - 555
  • [25] Streaming Algorithm for Big Data Logistic Regression
    Yang, Baijian
    Wang, Mengyao
    Xu, Zhenzhi
    Zhang, Tonglin
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 2940 - 2950
  • [26] A Fast Dual Algorithm for Kernel Logistic Regression
    S. S. Keerthi
    K. B. Duan
    S. K. Shevade
    A. N. Poo
    Machine Learning, 2005, 61 : 151 - 165
  • [27] PAIRWISE INTERACTION ANALYSIS OF LOGISTIC REGRESSION MODELS
    Xu, Easton Li
    Qian, Xiaoning
    Liu, Tie
    Cui, Shuguang
    2016 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2016, : 187 - 191
  • [28] Optimal Subsampling for Large Sample Logistic Regression
    Wang, HaiYing
    Zhu, Rong
    Ma, Ping
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (522) : 829 - 844
  • [29] Extending Logistic Regression Models with Factorization Machines
    Pijnenburg, Mark
    Kowalczyk, Wojtek
    FOUNDATIONS OF INTELLIGENT SYSTEMS, ISMIS 2017, 2017, 10352 : 323 - 332
  • [30] Logistic regression with misclassification in binary outcome variables: a method and software
    Liu H.
    Zhang Z.
    Behaviormetrika, 2017, 44 (2) : 447 - 476