High order finite volume methods for singular perturbation problems

被引:14
作者
Chen ZhongYing [1 ]
He ChongNan [1 ,2 ]
Wu Bin [1 ]
机构
[1] Sun Yat Sen Univ, Dept Sci Comp & Comp Applicat, Guangzhou 510275, Guangdong, Peoples R China
[2] Guangxi Univ Nationalities, Coll Math & Comp Sci, Nanning 530006, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2008年 / 51卷 / 08期
基金
中国国家自然科学基金;
关键词
finite volume methods; optimal meshes; singular perturbation problems;
D O I
10.1007/s11425-008-0120-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we establish a high order finite volume method for the fourth order singular perturbation problems. In conjunction with the optimal meshes, the numerical solutions resulting from the method have optimal convergence order. Numerical experiments are presented to verify our theoretical estimates.
引用
收藏
页码:1391 / 1400
页数:10
相关论文
共 18 条
[1]  
Adams R., 1975, Sobolev Spaces
[2]  
BAKHVALOV NS, 1969, USSR COMP MATH MATH+, V9, P841
[3]   A hybrid collocation method for Volterra integral equations with weakly singular kernels [J].
Cao, YZ ;
Herdman, T ;
Xu, YH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (01) :364-381
[4]  
Li R., 2000, Generalized difference methods for differential equations: Numerical analysis of finite volume methods
[5]   Galerkin methods based on hermite splines for singular perturbation problems [J].
Liu, ST ;
Xu, YS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 43 (06) :2607-2623
[6]   Error analysis for a Galerkin-spectral method with coordinate transformation for solving singularly perturbed problems [J].
Liu, WB ;
Tang, T .
APPLIED NUMERICAL MATHEMATICS, 2001, 38 (03) :315-345
[7]  
MILLER JJH, 1996, FITTED NUMERICAL SIN
[8]  
O'Malley R.E., 1974, Introduction to Singular Perturbations
[9]   Analysis of difference approximations to a singularly perturbed two-point boundary value problem on an adaptively generated grid [J].
Qiu, Y ;
Sloan, DM .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 101 (1-2) :1-25
[10]  
Roos HG, 1996, NUMERICAL METHODS SI