A continuous Newton-type method for unconstrained optimization

被引:0
作者
Zhang, Lei-Hong [2 ]
Kelley, C. T. [1 ]
Liao, Li-Zhi [2 ]
机构
[1] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] Hong Kong Baptist Univ, Dept Math, Kowloon, Hong Kong, Peoples R China
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2008年 / 4卷 / 02期
基金
美国国家科学基金会;
关键词
unconstrained optimization; continuous method; ODE method; global convergence; pseudo-transient continuation;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we propose a continuous Newton-type method in the form of an ordinary differential equation by combining the negative gradient and the Newton direction. We show that for a general function f(x) our method converges globally to a connected subset of the stationary points of f(x) under some mild conditions, and converges globally to a single stationary point for a real analytic function. The method reduces to the exact continuous Newton method if the Hessian matrix of f(x) is uniformly positive definite. We report on convergence of the new method on the set of standard test problems in the literature.
引用
收藏
页码:259 / 277
页数:19
相关论文
共 38 条
[1]   Convergence of the iterates of descent methods for analytic cost functions [J].
Absil, PA ;
Mahony, R ;
Andrews, B .
SIAM JOURNAL ON OPTIMIZATION, 2005, 16 (02) :531-547
[2]  
Airapetyan RG, 2000, APP MAT REV, P491, DOI 10.1142/9789812792686_0012
[3]  
Alvarez F, 1998, APPL MATH OPT, V38, P193
[4]  
ANDREI N, 2004, GRADIENT FLOW ALGORI
[5]   DIFFERENTIAL GRADIENT METHODS [J].
BOTSARIS, CA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1978, 63 (01) :177-198
[7]  
Braun M, 1993, Differential equations and their applications: an introduction to applied mathematics, V4th
[8]   SOME EFFECTIVE METHODS FOR UNCONSTRAINED OPTIMIZATION BASED ON THE SOLUTION OF SYSTEMS OF ORDINARY DIFFERENTIAL-EQUATIONS [J].
BROWN, AA ;
BARTHOLOMEWBIGGS, MC .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1989, 62 (02) :211-224
[9]   Pseudotransient continuation and differential-algebraic equations [J].
Coffey, TS ;
Kelley, CT ;
Keyes, DE .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 25 (02) :553-569
[10]  
Courant R., 1943, B AM MATH SOC, DOI [DOI 10.1090/S0002-9904-1943-07818-4, 10.1090/s0002-9904-1943-07818-4]