Single-parameter fault identification through information entropy analysis at the startup-transient current in induction motors

被引:21
作者
Cabal-Yepez, E. [1 ]
Romero-Troncoso, R. J. [1 ]
Garcia-Perez, A. [1 ]
Osornio-Rios, R. A. [2 ]
机构
[1] Univ Guanajuato, HSPdigital CA Telemat Procesamiento Digital Senal, DICIS, Salamanca, Gto, Mexico
[2] Univ Autonoma Queretaro, Fac Ingn Campus San Juan del Rio, HSPdigital CA Mecatron, San Juan Del Rio, Qro, Mexico
关键词
Wavelet packet; Information entropy; Startup-transient current; Induction motor; Fault detection; BROKEN-BAR DETECTION; DIAGNOSIS; CLASSIFICATION; TRANSFORM; HILBERT; FUSION;
D O I
10.1016/j.epsr.2012.02.016
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Opportune diagnosis of rotating machines contributes to avoid expensive reparations and unscheduled shutting downs, and prevents incomings losses. Most of the developed techniques for induction motor condition monitoring fall in one of three classifications: the detection of a single fault by analyzing one or multiple parameters; the detection of different faults by combining multiple parameters and processing techniques; and expert systems that combine several computing-intensive techniques to analyze different electrical and mechanical parameters in order to detect multiple faults. Recent works have been oriented to provide computationally effective diagnostic tools for condition monitoring, which able to discriminate different faults by analyzing a minimum set of parameters. This work presents a methodology for induction motor condition monitoring by analyzing a single parameter. The analysis combines the reconstruction of a single wavelet-packet node with information entropy to obtain one parameter, which allows the detection of different faults quantitatively by analyzing the startup-transient current signal from the induction motor. Experimental results show that the proposed methodology allows the detection of a healthy motor, a motor with one broken bar, a motor with unbalanced mechanical load, and a motor with a faulty bearing in a quantitative way; with a certainty of more than 99.7%. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:64 / 69
页数:6
相关论文
共 35 条
[1]   Experimental investigations on induction machine condition monitoring and fault diagnosis using digital signal processing techniques [J].
Al Kazzaz, SAS ;
Singh, GK .
ELECTRIC POWER SYSTEMS RESEARCH, 2003, 65 (03) :197-221
[2]   A new method for early fault detection and diagnosis of broken rotor bars [J].
Aydin, Ilhan ;
Karakose, Mehmet ;
Akin, Erhan .
ENERGY CONVERSION AND MANAGEMENT, 2011, 52 (04) :1790-1799
[3]   Hilbert-Huang transform for detection and monitoring of crack in a transient rotor [J].
Babu, T. Ramesh ;
Srikanth, S. ;
Sekhar, A. S. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2008, 22 (04) :905-914
[4]   Advances in Diagnostic Techniques for Induction Machines [J].
Bellini, Alberto ;
Filippetti, Fiorenzo ;
Tassoni, Carta ;
Capolino, Gerard-Andre .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2008, 55 (12) :4109-4126
[5]   Models for bearing damage detection in induction motors using stator current monitoring [J].
Bloedt, Martin ;
Granjon, Pierre ;
Raison, Bertrand ;
Rostaing, Gilles .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2008, 55 (04) :1813-1822
[6]   Novel hardware processing unit for dynamic on-line entropy estimation of discrete time information [J].
Cabal-Yepez, E. ;
Romero-Troncoso, R. de J. ;
Garcia-Perez, A. ;
Rodriguez-Donate, C. .
DIGITAL SIGNAL PROCESSING, 2010, 20 (02) :337-346
[7]  
Coifman R. R., 1992, Wavelets and Their Applications, P153
[8]   Wavelet and PDD as fault detection techniques [J].
Cusido, J. ;
Romeral, L. ;
Ortega, J. A. ;
Garcia, A. ;
Riba, J. R. .
ELECTRIC POWER SYSTEMS RESEARCH, 2010, 80 (08) :915-924
[9]   Novel Methodology for Online Half-Broken-Bar Detection on Induction Motors [J].
de Jesus Rangel-Magdaleno, Jose ;
de Jesus Romero-Troncoso, Rene ;
Alfredo Osornio-Rios, Roque ;
Cabal-Yepez, Eduardo ;
Miguel Contreras-Medina, Luis .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2009, 58 (05) :1690-1698
[10]   Robust condition monitoring for early detection of broken rotor bars in induction motors [J].
Garcia-Escudero, Luis A. ;
Duque-Perez, Oscar ;
Morinigo-Sotelo, Daniel ;
Perez-Alonso, Marcelo .
EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (03) :2653-2660