共 50 条
Thermodynamic analysis of Ni-ferrite based solar thermochemical H2O splitting cycle for H2 production
被引:28
作者:
Bhosale, Rahul R.
[1
]
机构:
[1] Qatar Univ, Dept Chem Engn, Coll Engn, POB 2713, Doha, Qatar
关键词:
Ni-ferrite;
Water splitting;
Hydrogen;
Thermochemical;
Solar energy;
HYDROGEN-PRODUCTION;
REDOX-PAIR;
CERIA;
NIXFE3-XO4;
REDUCTION;
SAMARIUM;
FE;
D O I:
10.1016/j.ijhydene.2018.03.145
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
In this paper, a comprehensive thermodynamic analysis of Ni-ferrite based H2O splitting cycle is performed using HSC Chemistry 7.1 software and its thermodynamic database. The influence of partial pressure of O-2(P-O2) in the inert N-2 and thermal reduction temperature (T-H) on delta (degree of nonstiochiometry) introduced in the Ni-ferrite crystal structure is investigated. With the increase in the P-O2 in the inert N-2 and T-H the delta increases, which results into higher levels of H-2 production via H2O splitting reaction. Variations in the other thermodynamic process parameters such as total amount of solar energy required to run the cycle ((Q) over dot(solar-cycle)), total amount of heat energy re-radiated from the cycle ((Q) over dot(re-rad-cycle)), amount of heat energy released by water splitting reactor ((Q) over dot(splitting-reactor)), cycle (eta(cycle)) and solar-to-fuel energy conversion efficiency (eta(solar-to-fuel)), and others as a function of P-O2 in the inert N-2, T-H, and water splitting temperature (T-L) are also researched. The eta(cycle) and eta(solar-to-fuel) upsurges with the reduction in the P-O2 in the inert N-2, T-H, and T-L. For instance, eta(cycle) = 29.5% and eta(solar-to-fuel) = 35.5% can be achieved at P-O2 in the inert N-2 = 10(-5) atm, T-H = 1600 K, T-L = 1000 K. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:61 / 71
页数:11
相关论文
共 50 条