A continuously differentiable upwinding scheme for the simulation of fluid flow problems

被引:5
作者
Lima, G. A. B. [1 ]
Ferreira, V. G. [1 ]
Cirilo, E. R. [1 ]
Castelo, A. [1 ]
Candezano, M. A. C. [1 ]
Tasso, I. V. M. [1 ]
Sano, D. M. C. [2 ]
Scalvi, L. V. A. [3 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Dept Matemat Aplicada & Estat, Sao Carlos, SP, Brazil
[2] Univ Oeste Paulista, Fac Ciencias Letras & Educ Presidente Prudente Fa, Presidente Prudente, SP, Brazil
[3] Univ Estadual Paulista UNESP, Dept Fis, Bauru, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
TVD/CBC stability; High resolution schemes; Upwinding; Convection term discretization; Boundedness criteria; Shock-capturing; Conservation laws; Free surface flows; HYPERBOLIC CONSERVATION-LAWS; HIGH-RESOLUTION SCHEMES; ORDER CONVECTION SCHEMES; INCOMPRESSIBLE-FLOW; NUMERICAL-SIMULATION; TRANSPORT; DISCONTINUITIES; INTERPOLATION; ADVECTION; LIMITERS;
D O I
10.1016/j.amc.2012.02.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the numerical solution of complex fluid dynamics problems using a new bounded high resolution upwind scheme (called SDPUS-C1 henceforth), for convection term discretization. The scheme is based on TVD and CBC stability criteria and is implemented in the context of the finite volume/difference methodologies, either into the CLAWPACK software package for compressible flows or in the Freeflow simulation system for incompressible viscous flows. The performance of the proposed upwind non-oscillatory scheme is demonstrated by solving two-dimensional compressible flow problems, such as shock wave propagation and two-dimensional/axisymmetric incompressible moving free surface flows. The numerical results demonstrate that this new cell-interface reconstruction technique works very well in several practical applications. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:8614 / 8633
页数:20
相关论文
共 57 条
[41]  
SCALVI LVA, 1987, REV FISICA APLICADA, V2, P93
[42]   Upwind compact finite difference scheme for time-accurate solution of the incompressible Navier-Stokes equations [J].
Shah, Abdullah ;
Yuan, Li ;
Khan, Aftab .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 215 (09) :3201-3213
[43]   An evaluation of three upwinding approximations for numerical modeling the flow in tubular membrane of Newtonian and non-Newtonian fluids [J].
Silva, J. M. ;
Ferreira, V. G. ;
Fontes, S. R. .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (20) :7955-7965
[44]  
Song B, 2000, INT J NUMER METH FL, V32, P881, DOI 10.1002/(SICI)1097-0363(20000415)32:7<881::AID-FLD2>3.0.CO
[45]  
2-6
[46]  
Spalding D. B., 1972, International Journal for Numerical Methods in Engineering, V4, P551, DOI 10.1002/nme.1620040409
[47]   Numerical solution of a PDE model for a ratchet-cap pricing with BGM interest rate dynamics [J].
Suarez-Taboada, M. ;
Vazquez, C. .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (09) :5217-5230
[49]  
VAN LEER B, 1974, J COMPUT PHYS, V14, P361
[50]   TOWARDS THE ULTIMATE CONSERVATIVE DIFFERENCE SCHEME .5. 2ND-ORDER SEQUEL TO GODUNOVS METHOD [J].
VAN LEER, B .
JOURNAL OF COMPUTATIONAL PHYSICS, 1979, 32 (01) :101-136