Perspective Article: Flow Synthesis of Functional Materials

被引:25
作者
Sebastian, Victor [1 ,2 ]
Khan, Saif A. [3 ]
Kulkarni, Amol A. [4 ]
机构
[1] Univ Zaragoza, Inst Nanosci Aragon INA, Dept Chem Engn & Environm Technol, Zaragoza, Spain
[2] CIBER BBN, Networking Res Ctr Bioengn Biomat & Nanomed, Madrid 28029, Spain
[3] Natl Univ Singapore, Chem & Biomol Engn, Singapore, Singapore
[4] CSIR, Natl Chem Lab, Chem Engn & Proc Dev Div, Pune 411008, Maharashtra, India
关键词
Flow synthesis; functional materials; nanoparticles; nanocatalysts; MOFs; energy storage devices; METAL-ORGANIC FRAMEWORKS; SHAPE-MEMORY POLYMERS; MICROFLUIDIC SYNTHESIS; SEGMENTED FLOW; SUPERCRITICAL MICROFLUIDICS; SPECTROSCOPIC DETECTION; BIOMEDICAL APPLICATIONS; ZIRCONIA NANOPARTICLES; GOLD NANOPARTICLES; ASSISTED SYNTHESIS;
D O I
10.1556/1846.2017.00028
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Continuous-flow synthesis of specific functional materials is now seen as a reliable synthesis approach that gives consistent product properties. This perspective article aims to survey recent work in some of the relevant areas and to identify new domains where flow synthesis of functional materials can be better than the conventional synthesis methods. It also emphasizes the need for developing high-throughput integrated synthesis and screening systems for almost all functional materials so that laboratory-scale recipes can be transformed into reliable manufacturing processes. New areas relevant to functional materials which have remained unexplored in flow synthesis are also highlighted.
引用
收藏
页码:96 / 105
页数:10
相关论文
共 114 条
[1]   Bright conjugated polymer nanoparticles containing a biodegradable shell produced at high yields and with tuneable optical properties by a scalable microfluidic device [J].
Abelha, T. F. ;
Phillips, T. W. ;
Bannock, J. H. ;
Nightingale, A. M. ;
Dreiss, C. A. ;
Kemal, E. ;
Urbano, L. ;
deMello, J. C. ;
Green, M. ;
Dailey, L. A. .
NANOSCALE, 2017, 9 (05) :2009-2019
[2]   On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system [J].
Adamo, Andrea ;
Beingessner, Rachel L. ;
Behnam, Mohsen ;
Chen, Jie ;
Jamison, Timothy F. ;
Jensen, Klavs F. ;
Monbaliu, Jean-Christophe M. ;
Myerson, Allan S. ;
Revalor, Eve M. ;
Snead, David R. ;
Stelzer, Torsten ;
Weeranoppanant, Nopphon ;
Wong, Shin Yee ;
Zhang, Ping .
SCIENCE, 2016, 352 (6281) :61-67
[3]   Investigation of Indium Phosphide Nanocrystal Synthesis Using a High-Temperature and High-Pressure Continuous Flow Microreactor [J].
Baek, Jinyoung ;
Allen, Peter M. ;
Bawendi, Moungi G. ;
Jensen, Klavs F. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (03) :627-630
[4]   Continuous flow production of metal-organic frameworks [J].
Batten, Michael P. ;
Rubio-Martinez, Marta ;
Hadley, Trevor ;
Carey, Keri-Constanti ;
Lim, Kok-Seng ;
Polyzos, Anastasios ;
Hill, Matthew R. .
CURRENT OPINION IN CHEMICAL ENGINEERING, 2015, 8 :55-59
[5]  
Baxendale IR, 2002, ANGEW CHEM INT EDIT, V41, P2194, DOI 10.1002/1521-3773(20020617)41:12<2194::AID-ANIE2194>3.0.CO
[6]  
2-4
[7]   Microfluidics for cell separation [J].
Bhagat, Ali Asgar S. ;
Bow, Hansen ;
Hou, Han Wei ;
Tan, Swee Jin ;
Han, Jongyoon ;
Lim, Chwee Teck .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2010, 48 (10) :999-1014
[8]  
Cabeza V. S., 2016, ADV MICROFLUIDICS N
[9]   Size-Controlled Flow Synthesis of Gold Nanoparticles Using a Segmented Flow Microfluidic Platform [J].
Cabeza, Victor Sebastian ;
Kuhn, Simon ;
Kulkarni, Amol A. ;
Jensen, Klavs F. .
LANGMUIR, 2012, 28 (17) :7007-7013
[10]   Synthesis and post-processing of nanomaterials using microreaction technology [J].
Chang, Chih-Hung ;
Paul, Brian K. ;
Remcho, Vincent T. ;
Atre, Sundar ;
Hutchison, James E. .
JOURNAL OF NANOPARTICLE RESEARCH, 2008, 10 (06) :965-980