Enhanced emission efficiency in doped CsPbBr3 perovskite nanocrystals: the role of ion valence

被引:6
作者
Guan, Mengyu [1 ]
Xie, Yunlong [2 ]
Wang, Yupeng [1 ]
He, Zhuojie [1 ]
Qiu, Lei [1 ]
Liu, Jun [1 ]
Chen, Keqiang [1 ]
Yan, Shaojiu [1 ]
Li, Guogang [1 ]
Dai, Zhigao [1 ]
机构
[1] China Univ Geosci, Fac Mat Sci & Chem, Wuhan 430074, Hubei, Peoples R China
[2] Hubei Normal Univ, Inst Adv Mat, Huangshi 435002, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
LIGHT-EMITTING-DIODES; QUANTUM DOTS; LIFETIMES; SUBSTITUTION; PASSIVATION; LANTHANIDE; STABILITY; LATTICE;
D O I
10.1039/d2tc03442e
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
All-inorganic perovskite nanocrystals (NCs) are considered as new candidates for low-cost semiconductor luminescent materials. Plentiful efforts have been made to improve the efficiency of perovskite NCs and reveal the mechanism by ion doping with the same valence and different ionic radii. However, only a few selected metal ion dopants can efficiently enhance the luminescence performance of NCs, and some underlying mechanisms are not clear. Here, we employ the opposite strategy to show how to enhance the photoluminescence quantum yield (PLQY) of CsPbBr3 NCs via Sr2+ and La3+ with similar ionic radii and different valence states. With the optimization of doping conditions, the PLQY of divalent Sr2+ and trivalent La3+ doped CsPbBr3 NCs can increase to 87%, but the enhancement mechanisms are the reduction of bromine vacancy defects in the bulk and surface of CsPbBr3 NCs to increase radiative recombinations, respectively. Divalent Sr2+ doping can eliminate halide vacancies and decrease the formation of defect states and nonradiative recombinations. Based on this mechanism, in order to achieve charge balance, trivalent La3+ doping establishes Br-rich conditions due to the absorptive effect of Br, and forms CsPbBr3@Br- NCs as the core-shell-like structures, which induces self-passivation of surface defects, thereby increasing the radiative recombination on the surfaces. Density functional theory calculations confirm the experimental conclusions, showing that Sr2+/La3+ dopants enrich the conduction band edge states of CsPbBr3, resulting in enhanced photoluminescence. This work sheds light on the highly efficient luminescence of divalent and trivalent metal ion-doped halide perovskite NCs and their enhancement mechanisms, illustrating their potential applications in fluorescence anti-counterfeiting.
引用
收藏
页码:14737 / 14745
页数:9
相关论文
共 65 条
[1]  
Amgar D, 2018, NANOSCALE, V10, P6060, DOI [10.1039/C7NR09607K, 10.1039/c7nr09607k]
[2]   Engineering Interfacial Charge Transfer in CsPbBr3 Perovskite Nanocrystals by Heterovalent Doping [J].
Begum, Raihana ;
Parida, Manas R. ;
Abdelhady, Ahmed L. ;
Murali, Banavoth ;
Alyami, Noktan M. ;
Ahmed, Ghada H. ;
Hedhili, Mohamed Nejib ;
Bakr, Osman M. ;
Mohammed, Omar F. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (02) :731-737
[3]   Crystal Structure, Morphology, and Surface Termination of Cyan-Emissive, Six-Monolayers-Thick CsPbBr3 Nanoplatelets from X-ray Total Scattering [J].
Bertolotti, Federica ;
Nedelcu, Georgian ;
Vivani, Anna ;
Cervellino, Antonio ;
Masciocchi, Norberto ;
Guagliardi, Antonietta ;
Kovalenko, Maksym V. .
ACS NANO, 2019, 13 (12) :14294-14307
[4]   Thermally Stable Copper(II)-Doped Cesium Lead Halide Perovskite Quantum Dots with Strong Blue Emission [J].
Bi, Chenghao ;
Wang, Shixun ;
Li, Qiang ;
Kershaw, Stephen V. ;
Tian, Jianjun ;
Rogach, Andrey L. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2019, 10 (05) :943-952
[5]   Origin of the Size-Dependent Stokes Shift in CsPbBr3 Perovskite Nanocrystals [J].
Brennan, Michael C. ;
Herr, John E. ;
Nguyen-Beck, Triet S. ;
Zinna, Jessica ;
Draguta, Sergiu ;
Rouvimov, Sergei ;
Parkhill, John ;
Kuno, Masaru .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (35) :12201-12208
[6]   Perovskite-organic tandem solar cells with indium oxide interconnect [J].
Brinkmann, K. O. ;
Becker, T. ;
Zimmermann, F. ;
Kreusel, C. ;
Gahlmann, T. ;
Theisen, M. ;
Haeger, T. ;
Olthof, S. ;
Tueckmantel, C. ;
Guenster, M. ;
Maschwitz, T. ;
Goebelsmann, F. ;
Koch, C. ;
Hertel, D. ;
Caprioglio, P. ;
Pena-Camargo, F. ;
Perdigon-Toro, L. ;
Al-Ashouri, A. ;
Merten, L. ;
Hinderhofer, A. ;
Gomell, L. ;
Zhang, S. ;
Schreiber, F. ;
Albrecht, S. ;
Meerholz, K. ;
Neher, D. ;
Stolterfoht, M. ;
Riedl, T. .
NATURE, 2022, 604 (7905) :280-+
[7]   Trimethylsilyl Iodine-Mediated Synthesis of Highly Bright Red-Emitting CsPbI3 Perovskite Quantum Dots with Significantly Improved Stability [J].
Cai, Yuting ;
Wang, Haoran ;
Li, Ye ;
Wang, Le ;
Lv, Ying ;
Yang, Xuyong ;
Xie, Rong-Jun .
CHEMISTRY OF MATERIALS, 2019, 31 (03) :881-889
[8]   Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells [J].
Chen, Hao ;
Teale, Sam ;
Chen, Bin ;
Hou, Yi ;
Grater, Luke ;
Zhu, Tong ;
Bertens, Koen ;
Park, So Min ;
Atapattu, Harindi R. ;
Gao, Yajun ;
Wei, Mingyang ;
Johnston, Andrew K. ;
Zhou, Qilin ;
Xu, Kaimin ;
Yu, Danni ;
Han, Congcong ;
Cui, Teng ;
Jung, Eui Hyuk ;
Zhou, Chun ;
Zhou, Wenjia ;
Proppe, Andrew H. ;
Hoogland, Sjoerd ;
Laquai, Frederic ;
Filleter, Tobin ;
Graham, Kenneth R. ;
Ning, Zhijun ;
Sargent, Edward H. .
NATURE PHOTONICS, 2022, 16 (05) :352-+
[9]   Monolithic perovskite/organic tandem solar cells with 23.6% efficiency enabled by reduced voltage losses and optimized interconnecting layer [J].
Chen, Wei ;
Zhu, Yudong ;
Xiu, Jingwei ;
Chen, Guocong ;
Liang, Haoming ;
Liu, Shunchang ;
Xue, Hansong ;
Birgersson, Erik ;
Ho, Jian Wei ;
Qin, Xinshun ;
Lin, Jingyang ;
Ma, Ruijie ;
Liu, Tao ;
He, Yanling ;
Ng, Alan Man-Ching ;
Guo, Xugang ;
He, Zhubing ;
Yan, He ;
Djurisic, Aleksandra B. ;
Hou, Yi .
NATURE ENERGY, 2022, 7 (03) :229-237
[10]   Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices [J].
Chiba, Takayuki ;
Hayashi, Yukihiro ;
Ebe, Hinako ;
Hoshi, Keigo ;
Sato, Jun ;
Sato, Shugo ;
Pu, Yong-Jin ;
Ohisa, Satoru ;
Kido, Junji .
NATURE PHOTONICS, 2018, 12 (11) :681-+