Hydrogenation of the liquid organic hydrogen carrier compound dibenzyltoluene - reaction pathway determination by 1H NMR spectroscopy

被引:107
作者
Do, G. [1 ]
Preuster, P. [1 ]
Aslam, R. [2 ]
Boesmann, A. [1 ]
Mueller, K. [2 ]
Arlt, W. [2 ]
Wasserscheid, P. [1 ,3 ]
机构
[1] Univ Erlangen Nurnberg FAU, Lehrstuhl Chem Reakt Tech, Egerlandstr 3, D-91058 Erlangen, Germany
[2] Univ Erlangen Nurnberg, Lehrstuhl Therm Verfahrenstech, Egerlandstr 3, D-91058 Erlangen, Germany
[3] Forschungszentrum Julich, Helmholtz Inst Erlangen Nurnberg Renewable Energ, Nagelsbachstr 59, D-91058 Erlangen, Germany
关键词
POLYCYCLIC AROMATIC-HYDROCARBONS; THERMAL HEATING FLUID; CATALYTIC-HYDROGENATION; STORAGE; PERFORMANCE; RUTHENIUM; HPLC; OILS;
D O I
10.1039/c5re00080g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The catalytic hydrogenation of the LOHC compound dibenzyltoluene (H0-DBT) was investigated by H-1 NMR spectroscopy in order to elucidate the reaction pathway of its charging process with hydrogen in the context of future hydrogen storage applications. Five different reaction pathways during H0-DBT hydrogenation were considered including middle-ring preference (middle-side-side, MSS), side-middle-side order of hydrogenation (SMS), side-ring preference (SSM), simultaneous hydrogenation of all three rings without intermediate formation and statistical hydrogenation without any ring preference. Detailed analysis of the H-1 NMR spectra of the H0-DBT hydrogenation over time revealed that the reaction proceeds with a very high preference for the SSM order at temperatures between 120 degrees C and 200 degrees C and 50 bar in the presence of a Ru/Al2O3-catalyst. HPLC analysis supported this interpretation by confirming an accumulation of H12-DBT species prior to full hydrogenation to H18-DBT with middle ring hydrogenation as the final step.
引用
收藏
页码:313 / 320
页数:8
相关论文
共 25 条
[1]   Selective catalytic hydrogenation of polycyclic aromatic hydrocarbons promoted by ruthenium nanoparticles [J].
Breso-Femenia, Emma ;
Chaudret, Bruno ;
Castillon, Sergio .
CATALYSIS SCIENCE & TECHNOLOGY, 2015, 5 (05) :2741-2751
[2]   Evaluation of Industrially Applied Heat-Transfer Fluids as Liquid Organic Hydrogen Carrier Systems [J].
Brueckner, Nicole ;
Obesser, Katharina ;
Boesmann, Andreas ;
Teichmann, Daniel ;
Arlt, Wolfgang ;
Dungs, Jennifer ;
Wasserscheid, Peter .
CHEMSUSCHEM, 2014, 7 (01) :229-235
[3]  
Chel'tsova M. A., 1965, B ACAD SCI USSR CH, V14, P107
[4]  
Crompton C. E., 1949, CATALYTIC HYDROGEN A
[5]   Hydrogen storage: beyond conventional methods [J].
Dalebrook, Andrew F. ;
Gan, Weijia ;
Grasemann, Martin ;
Moret, Severine ;
Laurenczy, Gabor .
CHEMICAL COMMUNICATIONS, 2013, 49 (78) :8735-8751
[6]   Comparison of catalytic performance of supported ruthenium and rhodium for hydrogenation of 9-ethylcarbazole for hydrogen storage applications [J].
Eblagon, Katarzyna Morawa ;
Tam, Kin ;
Tsang, Shik Chi Edman .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (09) :8621-8630
[7]   REGIOSELECTIVE CATALYTIC-HYDROGENATION OF POLYCYCLIC AROMATIC-HYDROCARBONS UNDER MILD CONDITIONS [J].
FU, PP ;
LEE, HM ;
HARVEY, RG .
JOURNAL OF ORGANIC CHEMISTRY, 1980, 45 (14) :2797-2803
[8]   Chemical utilization of hydrogen from fluctuating energy sources - Catalytic transfer hydrogenation from charged Liquid Organic Hydrogen Carrier systems [J].
Geburtig, Denise ;
Preuster, Patrick ;
Boesmann, Andreas ;
Mueller, Karsten ;
Wasserscheid, Peter .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (02) :1010-1017
[9]  
Gunther H., 1995, NMR SPECTROSCOPY BAS
[10]  
Hesse M., 2005, SPEKTROSKOPISCHE MET