Multilevel Monte Carlo Approximation of Distribution Functions and Densities

被引:44
作者
Giles, Michael B. [1 ]
Nagapetyan, Tigran [2 ]
Ritter, Klaus [3 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX2 6GG, England
[2] Fraunhofer ITWM, D-67663 Kaiserslautern, Germany
[3] TU Kaiserslautern, Fachbereich Math, D-67653 Kaiserslautern, Germany
来源
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION | 2015年 / 3卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
multilevel Monte Carlo; approximation of distribution functions and densities; stochastic differential equations; path-(in) dependent functionals; stopped exit times; smoothing; STOCHASTIC DIFFERENTIAL-EQUATIONS; EULER SCHEME; CONVERGENCE; DIFFUSION;
D O I
10.1137/140960086
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct and analyze multilevel Monte Carlo methods for the approximation of distribution functions and densities of univariate random variables. Since, by assumption, the target distribution is not known explicitly, approximations have to be used. We provide a general analysis under suitable assumptions on the weak and strong convergence. We apply the results to smooth path-independent and path-dependent functionals and to stopped exit times of stochastic differential equations (SDEs).
引用
收藏
页码:267 / 295
页数:29
相关论文
共 24 条
  • [11] Analysing multi-level Monte Carlo for options with non-globally Lipschitz payoff
    Giles, Michael B.
    Higham, Desmond J.
    Mao, Xuerong
    [J]. FINANCE AND STOCHASTICS, 2009, 13 (03) : 403 - 413
  • [12] Improved multilevel Monte Carlo convergence using the Milstein scheme
    Giles, Mike
    [J]. MONTE CARLO AND QUASI-MONTE CARLO METHODS 2006, 2008, : 343 - 358
  • [13] Exact approximation rate of killed hypoelliptic diffusions using the discrete Euler scheme
    Gobet, E
    Menozzi, S
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2004, 112 (02) : 201 - 223
  • [14] Sharp estimates for the convergence of the density of the Euler scheme in small time
    Gobet, Emmanuel
    Labart, Celine
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2008, 13 : 352 - 363
  • [15] Monte Carlo complexity of global solution of integral equations
    Heinrich, S
    [J]. JOURNAL OF COMPLEXITY, 1998, 14 (02) : 151 - 175
  • [16] Mean Exit Times and the Multilevel Monte Carlo Method
    Higham, Desmond J.
    Mao, Xuerong
    Roj, Mikolaj
    Song, Qingshuo
    Yin, George
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2013, 1 (01): : 2 - 18
  • [17] Jacod J, 1998, ANN PROBAB, V26, P267
  • [18] Statistical Romberg extrapolation: A new variance reduction method and applications to option pricing
    Kebaier, A
    [J]. ANNALS OF APPLIED PROBABILITY, 2005, 15 (04) : 2681 - 2705
  • [19] An optimal control variance reduction method for density estimation
    Kebaier, Ahmed
    Kohatsu-Higa, Arturo
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2008, 118 (12) : 2143 - 2180
  • [20] THE TIGHT CONSTANT IN THE DVORETZKY-KIEFER-WOLFOWITZ INEQUALITY
    MASSART, P
    [J]. ANNALS OF PROBABILITY, 1990, 18 (03) : 1269 - 1283