Existence and nonexistence results for a class of Hamiltonian Choquard-type elliptic systems with lower critical growth on R2

被引:7
作者
Maia, B. B. V. [1 ]
Miyagaki, O. H. [2 ]
机构
[1] Univ Fed Rural Amazonia, Campus Capitao Poco, Capitao Poco, PA, Brazil
[2] Univ Fed Sao Carlos, Dept Matemat, Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Hamiltonian elliptic system; Choquard equations; exponential critical growth; nonexistence; EQUATIONS; DECAY;
D O I
10.1017/prm.2021.57
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the existence and nonexistence of results for a class of Hamiltonian-Choquard-type elliptic systems. We show the nonexistence of classical nontrivial solutions for the problem {Delta u + u = (I-alpha * vertical bar v vertical bar(p)) v(p-1) in R-N, -Delta v + v = (I-beta * vertical bar u vertical bar(q))u(q-1) in R-N, u(x),v(x) -> 0 when vertical bar x vertical bar -> infinity, when (N + alpha)/p,+ (N + beta)/q <= 2(N - 2) (if N >= 3) and (N + alpha)/p (N + beta)/q >= 2N (if N = 2), where I-alpha and I-beta denote the Riesz potential. Second, via variational methods and the generalized Nehari manifold, we show the existence of a nontrivial non-negative solution or a Nehari-type ground state solution for the problem { Delta u + u = (I-alpha * vertical bar v vertical bar(alpha/2+1))vertical bar v vertical bar(alpha/2-1) v + g(v) in R-2, -Delta u + v = (I-beta * vertical bar u&VERBAR(;beta/2+1))vertical bar u vertical bar(beta/2-1) u + f(u), in R-2, u, v is an element of H-1 (R-2), where alpha, beta (0, 2) and f, g have exponential critical growth in the Trudinger-Moser sense.
引用
收藏
页码:1383 / 1410
页数:28
相关论文
共 22 条
[1]   NONTRIVIAL SOLUTION OF SEMILINEAR ELLIPTIC EQUATION WITH CRITICAL EXPONENT IN R2 [J].
CAO, DM .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1992, 17 (3-4) :407-435
[2]   Nehari-type ground state solutions for a Choquard equation with doubly critical exponents [J].
Chen, Sitong ;
Tang, Xianhua ;
Wei, Jiuyang .
ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) :152-171
[3]   Critical and subcritical elliptic systems in dimension two [J].
de Figueiredo, DG ;
do O, JM ;
Ruf, B .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2004, 53 (04) :1037-1054
[4]   Decay, symmetry and existence of solutions of semilinear elliptic systems [J].
De Figueiredo, DG ;
Yang, JF .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 33 (03) :211-234
[5]   Ground state solutions of Hamiltonian elliptic systems in dimension two [J].
de Figueiredo, Djairo G. ;
do O, Joao Marcos ;
Zhang, Jianjun .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (04) :1737-1768
[6]   ELLIPTIC-EQUATIONS IN R(2) WITH NONLINEARITIES IN THE CRITICAL GROWTH RANGE [J].
DEFIGUEIREDO, DG ;
MIYAGAKI, OH ;
RUF, B .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1995, 3 (02) :139-153
[7]   GRAVITATION AND QUANTUM-MECHANICAL LOCALIZATION OF MACRO-OBJECTS [J].
DIOSI, L .
PHYSICS LETTERS A, 1984, 105 (4-5) :199-202
[8]   A nonhomogeneous elliptic problem involving critical growth in dimension two [J].
do O, Joo Marcos ;
Medeiros, Everaldo ;
Severo, Uberlandio .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :286-304
[9]   GRAVITATIONAL SELF-ENERGY AS THE LITMUS OF REALITY [J].
JONES, KRW .
MODERN PHYSICS LETTERS A, 1995, 10 (08) :657-667
[10]  
Korman P., 2010, COMM APPL NONLINEAR, V17, P81